
OpenBSD’s New Suspend and Resume Framework

Paul Irofti

March 11, 2011

Abstract

Suspend and resume support in OpenBSD
was almost complete in the 4.8 Release.
During the development, a lot had to be
changed - it was a long process, starting
from acpi(4) and apm(4) changes, down
into the low level parts of autoconf(9) and
upwards into the device drivers. What
started as i386 and amd64 targeted devel-
opment turned into a machine independent
framework that can now be used by other
architectures. Currently, loongson is one
such architecture that is still a work in
progress.

1 Device Configuration

The devices found on a machine running
OpenBSD are handled by the kernel via the
autoconf(9) mechanism. Each new device
is added, based on hierarchy, into a tree
structure.

If, for example, a memory stick is plugged
into one of the machine’s USB ports, it
would likely be visible to the user as an
sd(4) disk. The sd(4) driver would as-
sign a new device, such as sd0, to the
memory stick and attach itself to a SCSI
bus. The SCSI bus in this case is pro-

vided by the USB mass storage support
driver, umass(4). Presence of umass(4) de-
vices implies presence of at least one USB
hub (implemented by uhub(4)). Following
this chain further, uhub(4) devices attach
to usb(4) controllers. usb(4) controllers are
typically connected to pci(4) buses, which
ultimately connect back to mainbus(4).
In total, the connection path looks like
sd(4) → scsibus(4) → umass(4) →

uhub(4) → usb(4) → ehci(4) → pci(4) →

mainbus(4) → root.

Each device has a set of specific functions
that configure the device. Every time a new
device is found its first matched against the
existing drivers and then, when identified,
the device is attached to the device tree (as
illustrated previously with the usb(4) exam-
ple). After the device is activated it be-
comes ready for use.

Upon shutdown or when unplugged, a de-
vice is first deactivated (notifying parents
and dependent sub-systems) and then de-
tached from the system.

All of these actions are implemented by
functions inside the autoconf(9) system
and are stored by drivers in a cfattach struc-
ture. For example the run(4) driver has
run match() that performs a usb lookup()
for vendor-product tags, run attach() sets



up the device capabilities and fetches the
required interfaces, run activate() handles
the activate and deactivate cases and finally
run detach() marks the interface down and
frees the RX and TX rings.

When a machine is suspended, most of
its hardware gets powered off and the crit-
ical parts are moved into a lower power
state. This allows them to do the mini-
mum amount of tasks necessary for saving
the system state and signal the machine to
wake-up when requested.

Thus the best place for drivers to pro-
cess the suspend and resume signals would
be inside their activate functions, similar to
the activate/deactivate logic.

2 Activate functions

In order to be able to process suspend and
resume signals from inside the driver’s acti-
vate function the autoconf(9) architecture
needs to be expanded to act upon such
events by broadcasting them down the de-
vice tree.

The config family functions (attach, de-
tach, activate and deactivate) now have a
new member called config suspend() that
will signal the driver with a suspend or re-
sume action, depending on what the caller
requested.
The config activate children() function

also needs to be enhanced by expanding it
for the new use cases. The function will
call config suspend(dev, action) while it it-
erates through the device’s children. If one
refuses to suspend, the function will try to
resume the previous devices in an attempt
to restore the system state and signal the
error.

After that it becomes the work of the
drivers to do the proper thing upon suspend
and resume. Some hardware is more robust
than others, in that the documentation isn’t
flawed and does what the power manage-
ment section says it does; others can’t be
trusted and the kernel driver needs to save
as much state in software as needed to re-
store it upon resume.

Extended tests on multiple configurations
and machine types ensured that the drivers
for poorly documented hardware became
more robust and stable by discovering new
registers that needed to be saved and un-
covering a proper flow in which the suspend
and resume actions needed to take place.

Quiesce Some devices need to be notified
beforehand about suspending in order to
finish or stop currently running jobs. The
context in which these tasks are handled is
very important. To do this, some drivers
require enabled interrupts, a running clock
and the ability to be provided longer hard-
ware response delays (to handle possibly
long-running tasks such as disk I/O).

For such devices, the drivers can receive
another action in their activate function -
QUIESCE. The term is mainly used in lit-
erature concerning storage and databases;
it describes the action of pausing or modify-
ing a given process so that data consistency
can be achieved.

Tasks might consist of finishing the cur-
rent disk I/O, dumping audio buffers, video
handling for VT switching out of X, wait-
ing for other dependent operations to suc-
ceed and any other actions the driver should
undergo while the machine is in a ‘normal’
running state.



3 APM and ACPI

With a driver framework and a way to prop-
erly signal the devices, from a hierarchy
and action point of view, the machine inde-
pendent kernel implementation is complete.
The rest is up to the machine’s power man-
agement capabilities. Currently there are
two ways of putting a machine in a low
power state: APM and ACPI.

3.1 APM

Most architectures give almost complete re-
sponsibility to the hardware or the BIOS [3]
to handle the machine specific tasks for sus-
pend and resume. This results in very little
work on the operating system side of things.

In this case a userland daemon polls
events from the user and hands them to the
kernel for processing. With the old suspend
framework this included handling some spe-
cific tasks that needed to be done by devices
found on the given architecture. This was
simplified and moved in the machine inde-
pendent part of the kernel.

The code flow for most of the APM ar-
chitectures is now very similar and easy to
maintain because of that. It usually boils
down to the following actions:

On suspend

• wsdisplay suspend() — suspend the
console display

• bufq quiesce() — prevent any new I/O
from reaching disk devices

• config suspend(QUIESCE) — start
broadcasting the quiesce message to
the device tree so that their activate

functions can stop the current opera-
tions

• splhigh() — set the system priority
level to high, blocking all hard and soft
interrupts

• disableintr() — low level system spe-
cific instructions to disable all inter-
rupts

• config suspend(SUSPEND) — now
it is safe to call the specific suspend
code for the drivers

• sys platform → suspend() — almost
done, only the low level platform spe-
cific parts need to be executed before
the system is fully suspended; this is
also the place where wake-up triggers
are set, such as power buttons, network
cards, special keyboard events, etc.

On resume

• sys platform → resume() — when a
wake-up event is received the system
awakes by first doing the low level plat-
form specific parts (e.g. resetting the
proper power plane and powering the
CPU and the fans)

• config suspend(RESUME) — while
the interrupts are still disabled signal
the drivers to restore state and reini-
tialize the needed registers

• enableintr() — call the low level in-
structions set to permit all interrupts

• splx() — restore the system priority
level prior to going to splhigh() on sus-
pend



• bufq restart() — restart the buffer
queue mechanism, allowing I/O

• wsdisplay resume() — turn on the
console display

3.2 ACPI

OpenBSD has its own ACPI [1] implemen-
tation. The only other open source alterna-
tive which most operating systems are us-
ing is Intel’s ACPICA [2]. There is also a
third closed-source implementation used in
Microsoft Windows.
ACPI treats things differently than

APM. It acts like a bridge between the
BIOS and the operating system allowing a
lot of flexibility and giving almost full con-
trol to the latter.
This makes the implementation more

complex and thus increases the machine
dependent part of the code. The kernel
must take care of everything, from setting
up its own resume trampoline (containing
the real-mode → protected-mode switch),
to making sure the suspend lamp is blink-
ing.
All of this relies in the end on specific

AML methods that should be implemented
according to the ACPI specification. AML
is the language in which the specification
is implemented for a particular machine.
The code differs a lot between models even
from the same manufacturer, so the ker-
nel can only make use of the methods from
the specification and create special product-
specific drivers for quirks and documenta-
tion violations (which are encountered fre-
quently).
The ACPI sub-system follows the same

logic flow as APM. It creates a fake APM

notification ioctl, acpiioctl(), that handles
the same commands as a regular APM ma-
chine. In case the user requests the machine
to be suspended, an ACPI task is added
that calls acpi sleep task() which puts the
system in S3 (suspend to RAM).

The transition from S0 (normal operation
state) to S3 looks something like this:

• acpi sleep task(S3) — checks if there’s
been a state transition requested and if
not proceeds to update runtime infor-
mation like battery life

• acpi sleep mode(S3) — handles state
changes, in case of suspend it sets up
the sleep state and then calls the ma-
chine dependent parts to finish the
switch to S3

• acpi prepare sleep state(S3) — this is
almost identical to the APM suspend
flow described earlier with a few ACPI
specific tasks in-between:

– TTS method — AML method
that transitions the machine to a
given state and should be called
before notifying the devices about
suspending

– PTS method — AML method
that prepares the machine to sleep
and should be called after the de-
vices were notified about the sus-
pend transition.

– SST — system status indicator
used to reset the lights to show
that the platform is in a sus-
pended state (e.g. blinking moon
or LED, or other visual indicator)



– GTS method — AML method
that permits the ACPI system
firmware to perform any required
system specific functions prior to
entering S3

– PM registers — set the power
management registers accordingly

– GPE wake registers — make sure
all wake signals are enabled

• acpi sleep machdep(S3) — go to the
machine dependent code and execute
the required suspend tasks

• acpi enter sleep state(S3) — in the
end do the last bit of fiddling with
ACPI specific power management reg-
isters and finally suspend the whole
system

On resume the system starts from an
ACPI trampoline that runs in real-mode.
Here the video is reenabled, then the system
goes to protected mode and enables pag-
ing, afterwards the saved CPU registers are
restored and a jump is taken to the point
where the system left off in the ACPI code
during suspend.
Besides the actions described in the APM

case, the resume path takes care of the fol-
lowing ACPI specific tasks:

• clearing of resetting the ACPI PM reg-
isters

• calling specific AML methods to tran-
sition back to S0

• reseting the system status indicators

• enabling the runtime GPEs (events
that are used to indicate something of

interest to the ACPI subsystem took
place, like a lid closing, a power but-
ton press, etc)

4 Issues

There are still some issues in the current
framework that are due to poor documen-
tation or the lack of it altogether.
The ACPI specification is not followed by

most vendors. It seems it is just a point
of reference at best. Some machines call
magic CMOS methods to do stuff and cre-
ate stubs for the related specification meth-
ods. Worse yet, there are different AML
methods pending on ACPI heuristics done
by the system to determine which operating
system is running. This is why OpenBSD
has to register as Windows to the BIOS in
order to get the proper methods since many
implementations will provide empty or bro-
ken methods for other operating systems.
Hardware documentation is an old topic

but also relevant in this case. Most of the
development for some devices has been a
”hide and seek” process with the device reg-
isters in an effort to find out which ones to
save, which bits to set and in what order.

Another challenging issue was video re-
posting (reinitialization on resume). Some
video cards need to be reenabled from real-
mode on resume. Others require the en-
tire BIOS video code to be executed, thus a
real-mode emulator was added to the kernel
and the BIOS code is now mapped and ran
through it at resume time.

The best case scenario is represented by
some video cards that don’t need any work
outside their regular driver activate func-
tions. And then there’s nVIDIA cards that



just don’t work and have no documentation.

To determine which video repost path to
use, the kernel uses a heuristic to deter-
mine, based on PCI ID, which video card
is present and how to act on resume.

5 Conclusions

The new framework is flexible and robust.
New architectures need only add their ma-
chine dependent code and respect the call
flow of the machine independent bits. For
new devices the code is also encapsulated in
their activate functions and the rest is taken
care of by the autoconf(9) framework.

The ACPI implementation is a bit more
sensitive, in the sense that newer machines
will probably bring in new quirks and vio-
lations of the standard. On the other hand
the machine independent part is pretty sta-
ble at this point and is probably less af-
fected by these drawbacks.

There is still work to be done in this area.
Hibernate (S4) support is almost ready
for prime-time. Nouveau [4] have tackled
the NVIDIA video problems, describing
a horrible hardware implementation that
at least seems to be fixable in software.
New platform ports like Loongson exhibit
more suspend and resume bugs in device
drivers like glxpcib(4) and bring out new
challenges. Likewise, Itanium will be yet
another interesting project as it will be
another ACPI based platform.

References

[1] Hewlett-Packard Corporation, Intel
Corporation, Microsoft Corporation,
Phoenix Technologies Ltd., and Toshiba
Corporation. Advanced Configuration
and Power Interface Specification,
Revision 4.0. 2009.

[2] Intel Corporation. ACPI Component
Architecture User Guide and Program-
mer Reference. Intel Corporation, 2010.

[3] Intel Corporation and Microsoft Cor-
poration. Advanced Power Manage-
ment (APM) BIOS Interface Specifica-
tion. 1996.

[4] FreeDesktop Nouveau. Accelerated
opensource driver for nvidia cards.
http://nouveau.freedesktop.org/.
[Online; accessed 12-February-2011].


