
OpenBSD SCSI Evolution

David Gwynne
The University of Queensland, Australia

Kenneth R. Westerback
Westerback Software Foundry Inc., Canada

Abstract
The SCSI protocol has become the lingua franca of block
oriented I/O. OpenBSD has always supported SCSI de-
vices, but recently the OpenBSD SCSI stack has been
significantly enhanced to improve stability, performance
and scalability.

This paper presents the architectural details of the re-
cent changes. It describes the state of the SCSI stack
(a.k.a. SCSI midlayer) at the beginning of the changes,
identifies issues driving those changes, describes current
state and lays out some near term goals for the SCSI
stack.

1 Introduction

In the beginning SCSI (Small Computer System Inter-
face) was one of many protocols used to communicate
with peripheral devices such as disk drives. It co-existed
with other standardized protocols such as IPI (Intelligent
Peripheral Interface) and ESDI (Enhanced Small Disk
Interface), along with a plethora of vendor specific at-
tachment technologies.

To the kernel it was one of several exit points for the
buffer cache I/O generated by various file systems. The
OpenBSD SCSI stack was a minimalistic layer that trans-
lated between buffer cache I/O’s and requests of hard-
ware devices.

The basic design can be summarized as:

(a) At system startup all attached SCSI buses would be
probed for attached devices. Each device discovered
would have a fixed limit of concurrent operations.
This limit was called the number of ’openings’ avail-
able for the device.

(b) The buffer cache would submit block I/O requests
via the SCSI device’s strategy routine. eg sdstrat-
egy() for disk devices (sd(4)).

(c) The strategy routine would convert the block I/O re-
quests into scsi xfer requests and issue the scsi xfer
requests to the hardware adapter. This was often
done in interrupt context as part of the completion
processing of a previous I/O.

(d) The strategy routine would NEVER issue more com-
mands than the hardware could handle, ie, the ’open-
ings’ limit would always be respected. If the open-
ings limit was exceeded then I/O’s would error out,
reporting EIO to the buffer cache code.

SCSI got popular, crowding out competitors. It got its
own standards committee, and accumulated various ven-
dor interest groups. There followed in quick succession
Fast, Wide, SCSI-II, SCSI-III, SCSI-IV, Ultra, Ultra-2,
Ultra-3, Ultra-4, U160, U320, 32 bit parallel buses, se-
rial buses, fibre buses, etc. New attachment technology
such as USB and ATAPI used significant chunks of SCSI
design and implementations.

The increasing demands of the SCSI protocol were
dealt with in OpenBSD almost completely within the
hardware adapter code for each new SCSI adapter. Out-
side of bug fixes and code cleanup there were few
changes in the actual SCSI midlayer. This was the ad-
vantage of the minimalistic design: there wasn’t much to
change.

Today SCSI is everywhere, it is all around us. Even
now, in this very room.

2 History

This paper does not attempt to describe the entirety of
SCSI and its history. Instead it describes the state of
the OpenBSD software stack and supported hardware
around 2005 when major changes began to be make. The
description will provide only enough detail to understand
the issues driving the changes that are the topics of later
sections.



2.1 Hardware
The OpenBSD SCSI midlayer provided the normal
SCSI device abstractions to the rest of the kernel. ie
disk (sd(4)), cdrom (cd(4)), tape (st(4)), media changer
(ch(4)), scanner (ss(4)), and enclosure (ses(4)) devices.

Of these only sd(4), cd(4), and st(4) were in common
use and likely to work with actual hardware. Only sd(4)
had the requirement or normally attempted to execute
more than one SCSI command at a time. This paper will
focus on sd(4) devices.

The SCSI adapters supported were varied, and ranged
from devices where the SCSI bus transitions were di-
rectly controlled (eg trm(4)), to RAID controllers which
provided interfaces that closely resembled the SCSI com-
mand set (eg arc(4)).

The SCSI adapters could be connected via hardware
busses such as ISA, EISA, or PCI.

2.2 Software
At startup the kernel would probe each SCSI bus found,
attempting to contact every possible SCSI target and lun.
Each bus would allocate a fixed set of resources, usually
sufficient to control 256 I/O’s. The number of openings
that would be given to each device discovered was cal-
culated by dividing the the set of allocated resources by
the maximum number of targets. A narrow bus had 8
possible targets and a wide bus had 16. Thus a device
discovered on a ’wide’ bus would receive resources al-
lowing 16 I/O’s to be started at one time. If only 1 device
was found the other resources would remain unallocated
and unused.

The normal path for a disk I/O was

(a) sdstrategy() was invoked with a pointer to a struct
buf describing an I/O. The buf was placed into a
sorted queue of I/O requests.

(b) sdstart() was invoked from sdstrategy() to process
the queue. If the destination device had unused
’openings’, requests were removed from the queue
and sent to the device via scsi scsi cmd() until either
the openings or the request queue were exhausted.

(c) scsi scsi cmd() created a scsi xfer struct that de-
scribed the desired I/O in SCSI terms, and submitted
the scsi xfer to the scsi cmd() entry point provided
by the hardware adapter.

(d) scsi done() was invoked by the hardware adapter in
interrupt context to return the I/O result via the orig-
inal buf.

(e) scsi done() invoked sdstart() to process the queue of
I/O requests.

There were a number of known issues, all irritating
rather than crippling. They included

(a) ’openings’ were proving a porous limit, and hard-
ware adapters were getting more I/O’s than they
could handle. This resulted from SCSI commands
being injected by scsi scsi cmd() calls from outside
the normal block I/O path described above, eg via
ioctl calls. As a result I/O’s could randomly fail.

(b) many hardware adapters had created their own inter-
nal queuing to handle excessive I/O requests, leading
to significant code duplication, and confusion about
who was really responsible for the I/O request queue.

(c) static allocation of resources was wasteful of scarce
kernel memory when so few devices were normally
present on any one bus.

(d) equal distribution of static resources to all possible,
as opposed to actual, targets meant that the system
could not provide more resources to busy devices
when required, even though the resources were avail-
able.

(e) SCSI busses could support many more devices than
the 8 or 16 originally envisioned.

The irritation began to edge into annoyance in 2005.
In March, bioctl(8) was committed, in August safte(4)
and ses(4) were committed. In July 2006 a major rewrite
of the ch(4) device was committed. With these, and im-
provements to the sensors framework for reporting sys-
tem information, the number of SCSI commands being
injected outside of the block I/O path protected by the
openings limit began to be so significant that problems
were encountered with some regularity.

The first reaction was to reserve some of the available
openings for these alternative paths. This was done by
setting openings to a value less than the number of I/O’s
the adapter code could handle. This alleviated most but
not all of the problems with failing I/O’s. And it exacer-
bated the growing disconnect between the openings val-
ues and the hardware adapter resources that the openings
were supposed to represent.

The second reaction was the first architectural change
to the SCSI midlayer in many years. This was the in-
troduction at h2k6 at the end of 2006 of a new mecha-
nism to allow the scsi cmd() entry points of the hardware
adapters to reject I/O’s, with sdstart() gaining the ability
to re-queue the rejected I/O’s.

This mechanism, termed NO CCB after the new result
code, was largely adapted from NetBSD.

Over the course of 2008 and 2009 NO CCB allowed
the removal of reserved openings, and the elimination
of most of the internal queueing in the hardware adapter

2



code. In itself it proved insufficient to solve all the prob-
lems. But it had removed the psychological barrier to
considering significant changes to the SCSI midlayer.

The floodgates had been opened.

3 SCSI Moving Forward

SCSI hardware has evolved and devolved at the same
time. Once upon a time SCSI meant one type of hard-
ware interconnect with a well known number of targets
and possible luns. These days the SCSI bus is the lin-
gua de franca of storage. Even ATA, despite being ex-
tremely common in its own right, is being placed behind
SCSI emulation layers. Hardware RAID controllers used
to provide their own command sets, but the trend with
modern RAID controllers is to simply provide a SCSI
interface and translate it inside its own firmware.

The agnosticism of the SCSI command set towards the
transport mechanism is likely responsible for this suc-
cess.

It has evolved toward very complicated ”enterprise”
solutions featuring high availability with multiple paths
between the host and storage, high speed interconnects
etc. It has devolved in the case of USB. The concepts
and solutions found in the high end are making their way
down into things like iSCSI and SAS and are becoming
more common.

3.1 Software
Throughout this period the OpenBSD SCSI stack did
generally keep up with support for the newer and varied
hardware. These changes included the widening of SCSI
buses, ie, allowing more than 8 or 16 targets on a bus,
increasing the lun depth from 0 or 8 to an arbitrary value,
working hotplug (but perhaps not safe hotplug), and sup-
port for modern command sets (eg, SBC2 and SBC3 for
larger disk support)

However, while the stack did support most new devel-
opments, and did indeed support newer physical hard-
ware, it lacked the ability to scale and adapt. Newer
physical hardware features much wider buses and deeper
luns, larger command queues, and out of band command
handlers, all of which strain at the original midlayer’s
constraints and assumptions. We could use modern hard-
ware, but we had to compromise to use it. The semantics
of the original SCSI midlayer did not allow us to make
effective or fair use of the resources available to us.

Furthermore, as multipathing nears the mainstream
with the advent of iSCSI, the original architecture
acted as an obstruction to proper multipath support in
OpenBSD.

The rest of this paper will discuss changes made in the
last 2 years to solve some of the architectural issues we

inherited.

4 Probing Adapters For Devices

The SCSI midlayer was written with the assumption that
adapters were simply transports for SCSI commands.
There was no state stored in an adapter about any de-
vices attached to it, it just transported the commands.
The midlayer probed for devices by issuing INQUIRY
commands at every possible address on the bus and if it
got a response it proceeded to try and attach a device.

This assumption was flawed because of how SCSI
is mapped on top of various transports. For example,
OpenBSD now emulates SCSI on top of some ATA con-
trollers. The emulation code needs to know what type of
ATA device is present so it can provide the appropriate
SCSI emulation for it before the midlayer talks to it.

Previously adapters that needed to allocate state for
a device used to snoop the commands going past their
SCSI command handlers and look for things it knew the
midlayer would request at certain points in the device’s
lifecycle. Because there was no recognizable command
at the end of a device’s life (usually its life ends be-
cause its been removed), the adapters were rarely able
to properly free up state associated with a device when
it went away. This wasn’t a huge problem for things
like USB since the bus and adapter go away at the same
time, but it was becoming an issue when trying to support
hotplug busses and RAID volumes which need different
state saved for different targets.

We added adapter handlers so the midlayer could ask
the adapter if there might be a valid device at that address
and give the adapter a chance to modify the device be-
fore the midlayer talks to it. For example, you can attach
ATAPI SATA devices to SAS mpi(4) controllers, but by
default mpi(4) assumes anything attached to it is a nor-
mal SCSI device. The probe adapter handler in mpi(4)
will query the firmware to see if a device is ATAPI so it
can set the appropriate flags for cd(4) to use once it is at-
tached, so it in turn will generate appropriate commands
for the device.

Once the midlayer has finished with a device (or it
found no device during its probe) it calls another adapter
handler to clean up any state the adapter did allocate.

5 Fixing The SCSI Command API

During the f2k9 hackathon hosted in Sweden in Septem-
ber 2009 an attempt was made to implement SCSI mul-
tipathing.

SCSI multipathing involves collecting all the physical
paths to a single SCSI device and presenting a single ab-
stracted instance of the device for use in the kernel. As

3



physical paths appear and disappear, the abstracted de-
vice remains constant and accessible via these backend
paths.

The actual implementation of this functionality in-
volved having the SCSI midlayer detect and steal paths
to devices that could support multipathing. These paths
were then used behind the scenes by a virtual SCSI bus
called mpath(4). mpath would then take requests from
a single virtual device and issue another SCSI command
request on its behalf to a physical device.

The executive summary of this is that the SCSI com-
mand interface was called twice for every SCSI operation
to a multipathed device, the first going to the virtual de-
vice and the second for the command going to the phys-
ical device. This exposed an annoying ”feature” of the
SCSI Command API.

5.1 The Original SCSI Command API
All requests used to go via a single function called
scsi scsi cmd:

int scsi_scsi_cmd(
struct scsi_link *link,
struct scsi_generic *cdb,
int cmdlen,
u_char *data_addr, int datalen,
int retries, int timeout,
struct buf *bp, int flags);

One of the biggest problems with this API was that it
was very hard to remember what the arguments meant
when it was being used or read. When reviewing code it
was difficult to recognize the meanings of some param-
eters because of the length of the argument list. Invo-
cations tended to be copied without much thought about
whether some of the values were appropriate in the con-
text of the new code.

The problems that really bit us when implementing
multipath support was that it isn’t possible to submit a
command for asynchronous completion without supply-
ing a struct buf, and it isn’t possible to inspect the result
of the SCSI transfer directly.

Hardware SCSI controllers generally complete SCSI
operations via interrupts, ie, you submit a SCSI com-
mand and then go do something else until it completes
and generates an interrupt to let you know. scsi scsi cmd
wouldn’t let you do something else while waiting for the
interrupt unless you were doing block I/O represented by
the buf you pass to it. Without a buf scsi scsi cmd would
poll or sleep while waiting for the adapter to complete
the command before return to the caller.

If you were using a buf and you didn’t ask
scsi scsi cmd to poll for the commands completion, then
scsi scsi cmd would return immediately. This would al-
low you to queue multiple block I/O operations until you

ran out of command slots to fill and then go do some-
thing else while the hardware actually processed all those
queued operations. As these block I/O operations were
completed and returned to the SCSI midlayer, it would
call a per driver callback to finalize the block I/O oper-
ation and finally call the block layer directly on the de-
vices behalf to complete the I/O request.

Because the SCSI command interface only allowed
asynchronous completions for block I/O requests, all the
SCSI device drivers that wanted asynchronous comple-
tions faked block requests for their common I/O paths.
For example, SCSI scanners forced their operations into
bufs so they could perform asynchronous completions
for requests. Other drivers required kernel threads to
perform their actions, allowing scsi scsi cmd to sleep
while waiting for the transaction to complete rather than
polling with busy-waits on hardware state.

To effectively proxy requests from a virtual device,
mpath(4) should be able to queue multiple transfers onto
a physical path, but this was impossible without it cre-
ating a request of its own with a buf. Providing a fake
buf without any storage associated with it and generat-
ing useless calls into the block layer was considered but
quickly rejected.

In either the asynchronous or synchronous case
scsi scsi cmd did not let you inspect the SCSI transfer
it executed on your behalf to see what the hardware re-
sponded with. The midlayer would translate the trans-
fer’s state into a single int error value. Which it reported
via the return code from scsi scsi cmd or as an error to
the block layer in the buf struct.

mpath(4) needs to be able to look at the SCSI trans-
fer directly to make appropriate decisions about what to
do with the command it was proxying. For example, if
the physical adapter marks a transfer as RESET or SEL-
TIMEOUT in response to a path disappearing, mpath(4)
might choose to send the transfer down another physical
path rather than report the failure up to the actual disk
device driver. The midlayer would translate the very pre-
cise state in the SCSI transfer to overlapping and there-
fore useless error codes before reporting it to the wrong
software layer.

Lastly, because scsi scsi cmd allocated the actual re-
sources needed to perform the SCSI transfer inside itself,
it was difficult for devices to coordinate and guarantee
access to those resources without doing their own lock-
ing. Drivers tended to do this locking around their com-
mon I/O path, but it was haphazardly applied to all the
other paths in the same drivers that could generate SCSI
commands.

While it would have been technically possible to
(ab)use the interfaces provided it would have made a well
performing multipath implementation extremely fragile
and difficult to comprehend and maintain. The imple-

4



mentation written during f2k9 was simple from a code
point of view, but wasn’t ideal because it effectively
caused I/O to multipathed devices to be issued one at a
time and polled for their completion. It confirmed the
opinion held by the SCSI developers that the command
API was too complicated, restrictive, and rife with subtle
caveats and side effects.

5.2 The Replacement SCSI Command API
After the issues with the original API became painfully
apparent the following API was designed and largely im-
plemented during f2k9.

struct scsi_xfer *scsi_xs_get(
struct scsi_link *,
int flags);

void scsi_xs_exec(
struct scsi_xfer *xs);

int scsi_xs_sync(
struct scsi_xfer *xs);

void scsi_xs_put(
struct scsi_xfer *xs);

The goal of the API is to allow consumers to allocate
a SCSI transfer (struct scsi xfer) and set it up directly in-
stead of through arguments to a function that would do it
on your behalf. A scsi xfer struct allocated by scsi xs get
is preset with sane or commonly used defaults on param-
eters wherever possible, thereby simplifying the use and
readability of a lot of code.

The scsi xfer structure was extended so each re-
quest had its own completion routine which the con-
sumer specified (ie, a per command completion han-
dler rather than per a device completion handler), which
would be called when the adapter completes the transfer.
This completion routine would have full access to the
scsi xfer structure so it could examine its state according
to the adapter.

If you wish to asynchronously complete a command,
you must specify a completion handler and submit it us-
ing scsi xs exec. If you wish to sleep while waiting for a
command to complete you submit it using scsi xs sync,
but you must not specify a completion handler for that
command as the API provides its own internal comple-
tion handler. It is assumed that you will do any com-
pletion work on the transfer once you’re woken up and
scsi xs sync returns.

There is no special behaviour inside this API depen-
dant on whether a buf structure has been provided or
whether it is a block I/O request or a simple device in-
quiry command. Lastly, there is no implicit free of the
scsi xfer structure by the midlayer or calls into other soft-
ware layers in the kernel. Drivers that do handle block
I/O requests from the buffer cache are now responsible

for calling biodone() with the requests rather than hav-
ing the midlayer do it on its behalf. What happens to
the transfer once it completed is the responsibility of the
driver that set the transfer up, it can either free the re-
source or use it again. Again, the midlayer no longer
implicitely frees scsi xfer structures on a drivers behalf.

The API was designed so you could use scsi xs put
as the completion handler for a transfer so it was freed
immediately after completion. In practice this has proved
unnecessary.

The new API is a lot simpler to use and understand in
practice because it does so much less than the previous
scsi scsi cmd() interface. This simplicity does come at
a cost. The actual device drivers have to do more work
to replace the functionality that was removed from the
midlayer. However, while the driver code is larger, it is
more explicit and obvious what actions are taken when,
and is therefore readable and maintainable.

The old and the new APIs co-existed as devices were
converted, with the old API removed in July of 2010.

6 Fixing Adapter’s scsi cmd Handlers

The complexity of the scsi scsi cmd internals as de-
scribed above extended beyond the midlayer itself and
into the API it expected SCSI adapters to implement.
Commands submitted to the midlayer via scsi scsi cmd
and now scsi xs exec had to end up on the hardware at
some point. While each instance of an adapter provides
its own function, we can generally refer to these as the
scsi cmd() handler.

Once a scsi cmd handler has been given a scsi xfer
to deal with, it obviously has to signal its completion
to the midlayer. This used to be done by one of two
method. The state field of the scsi xfer could be mod-
ified and scsi done called to return it to the midlayer, Or,
if the adapter was still in the call to its scsi cmd handler
it could return COMPLETE to the midlayer which would
then take on the responsibility of finishing the scsi xfer
on the adapters behalf.

So, not only did the midlayer do work on the SCSI de-
vice’s behalf, like calling biodone for block I/O requests,
it also tried to do work on the adapters behalf. This un-
clear distribution of responsibility led to fragile code at
best.

This was a fairly simple semantic to understand but
it was hard to reliably implement, especially in com-
bination with the need to handle polled SCSI requests.
Polled SCSI requests required scsi cmd handlers to re-
turn COMPLETE to the midlayer, but special casing
POLLED handling in the depths of an adapters command
handling far from the scsi cmd call led to very compli-
cated code.

5



During the replacement of the scsi scsi cmd API, the
adapter scsi cmd handlers were updated to be void func-
tions, rather than functions returning COMPLETE or
SUCCESSFULLY QUEUED by an int return type to the
midlayer. This in turn meant that all scsi xfers had to be
given back to the midlayer via a call to scsi done.

Of all the changes made to the SCSI subsystem, this
was the most error prone simply because there are so
many SCSI adapter drivers, roughly 80 across the entire
OpenBSD tree. It was impossible to sufficiently test this
change across so many different architectures and drivers
because the developers did not have access to the entire
range of hardware. The decision was made to commit the
changes at a point in the development cycle that would
allow as much testing by the community as possible be-
fore a release was made.

The most common problem falling out of these
changes was discovering an adapter calling scsi done()
on the same scsi xfer multiple times, or not at all. Apart
from a few notable exceptions (ciss(4) and gdt(4) in par-
ticular), fixes for these problems were trivial.

Tracking the ownership of a scsi xfer (ie, device to
midlayer to adapter and back again) is a lot easier now as
obvious API calls act as gates between these layers. For
example, it is now trivial to identify when an adapter fin-
ishes processing a scsi xfer by looking for the scsi done
calls. Any handling of a scsi xfer after a call to scsi done
can be considered a bug (similar to a use after free) and
must be fixed.

Yet again, by removing code from the midlayer for im-
plied handling of a scsi xfer, it was able to be simplified.
in turn this enabled great improvements in the readabil-
ity and maintainability of both the midlayer itself and the
adapter drivers. The clarification of responsibilities led
to much more robust code in general.

7 Command Allocation and Scheduling

The way the SCSI subsystem allocated and distributed
openings for commands between the devices on a bus
has already been discussed. An adapter would generally
allocate a set number of command slots and then evenly
distribute them between all possible devices on a bus.
The example before described an adapter with 256 open-
ings and a bus width of 16 targets which would carve the
openings up so each target would get 16 of these open-
ings.

The number of openings an adapter advertises to the
midlayer is a contract. If the adapter says it can han-
dle 16 openings on a device, it must be able to accept
and process that number of concurrent commands. If the
adapter fails to process a command and returns an error
to the midlayer, an error will be reported further up the

stack. Failing block I/O can lead to the block layer be-
lieving a filesystem is inconsistent and therefore corrupt.

There were several problems with the way openings
were distributed between devices.

Firstly, the SCSI midlayer considers devices on luns
as equal consumers of openings on an adapter. If you
really wanted to evenly distribute an adapters openings
amongst all possible devices on a bus you would take
luns into consideration in addition to targets.

Some SCSI hardware consumes a target id on its bus,
eg, traditional parallel SCSI adapters occupy the address
slot at target 7 on a bus, so a device cannot exist there and
should therefore not be counted as a possible consumer
of the adapters resources.

Secondly, allocating resources for possible devices is
obviously naive. Despite the increases in bus widths and
lun depths, the number of command slots hasn’t grown
at the same rate, so modern disks are being allocated less
openings to use compared to their historic counterparts.
To compensate you can violate the principal of being
conservative in dividing adapters openings up between
targets, but how optimistic to be is hard to judge. Ei-
ther you over-allocate and allow I/O failures to occur, or
you’re still too conservative and fail to effectively utilize
the adapters resources.

Thirdly, even you could correctly foresee the number
of actual devices and allocate openings accordingly, the
number of actual devices doesn’t reflect the number of
devices you’re using at any point in time. To explain,
if you have multiple disks in a server you may dedicate
one to the operating system and software, and use an-
other disk for a database. Generally the disk with the
database on it will get more I/O requests than the disk
the operating system is on, therefore the openings dedi-
cated to the operating system disks are wasted when the
database disk could make use of them.

It was not possible for the midlayer to redistribute
openings between devices after a bus had been probed
because the midlayer itself had no visibility on what re-
sources the adapter actually had. So far we have been
discussing adapters that have a pool of openings that any
target could use, but some controllers have a pool of
commands for each target which cannot be redistributed
to other targets. This is true of ATA controllers such as
ahci(4) and sili(4). The SCSI to ATA translation maps
their ports to SCSI targets, but each port on these ATA
controllers has their own set of registers and command
slots which cannot be used by other ports. Also, because
device drivers (eg, cd(4)) reduce their openings below
what the adapter allocates to them, and adapters cannot
easily determine which drivers are attached where, it was
not possible for the adapter to redistribute their resources
either.

Fourthly, many modern controllers have non-SCSI

6



command paths that the kernel can use to talk to the chip.
For example, RAID controllers such as mpi(4), mpii(4),
mfi(4), and ami(4) allow the kernel to query the state of
volumes by using a custom firmware command. These
custom commands use the same adapter resource that a
normal SCSI operation would consume, which further
adds to the contention for openings. The traditional so-
lution to this problem was to permanently allocate one
of the adapters openings for use with custom commands
and have the adapter use a lock around it to avoid further
contention on it.

In summary, the SCSI stack was too conservative
when distributing adapter resources between possible
targets and at the same time extremely optimistic about
the number of devices that could appear. The midlayer
was very simplistic at scheduling access to an adapters
resource by dedicating openings to devices rather than
granting access to them based on need.

The first attempt to solve this problem was called
NO CCB.

NO CCB was an additional return code (the others
being COMPLETE, SUCCESSFULLY QUEUED and
TRY AGAIN LATER) that an adapter’s scsi cmd han-
dler could return. NO CCB caused scsi scsi cmd to re-
turn a new code to its caller. ie, it was a signal from
an adapter that it did not have an opening to handle
the transfer which the midlayer propagated up to the
scsi scsi cmd caller. It was named NO CCB because
adapters generally named their internal command han-
dling structure as a ”ccb”. The total number of openings
an adapter gave to attached devices was supposed to be
less than or equal to the number of ccbs it had allocated.

SCSI devices (sd(4), etc.) were then modified to look
for that return code and requeue, at the head of the queue,
the I/O they were attempting to issue to the adapter.

This solution was applied to many adapter drivers and
definitely did allow better utilization of an adapters re-
sources. Unfortunately there were a few caveats to the
NO CCB solution that became apparent as it became
more widely used.

One was that NO CCB results caused the midlayer
to immediately return to the caller, without retrying the
I/O. Callers were now expected to do the retrying. This
expectation was correct for the normal block I/O path
through strategy routines. It was not met by other paths,
which resulted in a much higher rate of failure on these
paths than had been previously experienced.

Another issue with NO CCB was that it did not pro-
vide a mechanism to notify code waiting for adapter
openings that one had become available. You cannot rely
on further calls to the strategy routine as the block layer
may be waiting on a block that the device has queued be-
fore waking up a process to generate more I/O requests.

The best that a strategy routine could do on receiv-

ing NO CCB, was to schedule a timeout to run in the
near future that would trigger queue processing if queue
processing was not triggered sooner by a new I/O being
queued by the strategy routine.

The same was true of the other paths. In all cases there
was no guarantee that any retry of the I/O would succeed,
leading to unnecessary retries.

A third issue with NO CCB was relaxing the openings
limit, as several adaptors did in an attempt to make more
efficient use of the resources available by relying on the
back pressure mechanism of NO CCB to not lose I/O
requests.

It was now possible for a busy device to monopolize
the adapter. If you have a system with two disks, and one
disk is busy, it will be using a lot of the adapters open-
ings. If it continues to have work queued on it, it will
continually reuse the openings it currently has to service
that queue. However, if work is queued on that second
disk, it will be starved of the adapters openings because
the first disk only ever asks itself if there is outstanding
work to do.

Lastly, the NO CCB implementation only dealt with
helping devices attached to the midlayer, it did not try
to guarantee that the adapters use of its own ccbs was
guaranteed. Adapter drivers could have introduced the
sleeping semantic for ccbs that the midlayer used while
waiting for a devices openings, but this would have led
to a lot of code duplication and therefore possible places
for bugs and variation

After the replacement of the scsi scsi cmd API with
the scsi xs get family of functions, there was sufficient
impetus to keep working and provide a solution to the
allocation and distribution problem once and for all.

The requirements for this solution were:

• A device should be able to use all the resources
available to it at any point in time.

• When there is contention for an adapters resources
a single consumer should not monopolize said re-
sources by reusing them immediately. Another con-
sumer should be given the opportunity to use them
instead.

• A consumer must be able to be notified when a re-
source has become available for it to use. It should
not have to schedule a timeout to give it a go later
on.

• An adapter must be able to contend alongside SCSI
devices for its own resources.

• Devices should continue to respect their own num-
ber of openings. This is so devices that limit their
own openings (eg, if it knows it is talking to a

7



buggy device that cannot handle multiple outstand-
ing commands) but still have long queues of I/O
cannot erroneously consume adapter resources.

The solution was the development of iopools and the
scsi ioh and scsi xsh APIs.

void scsi_iopool_init(
struct scsi_iopool *iop,
void *cookie,
void *(*io_get)(void *cookie),
void (*io_put)(void *cookie,
void *io));

void scsi_iopool_destroy(
struct scsi_iopool *iop);

void scsi_link_shutdown(
struct scsi_link *link);

void *scsi_io_get(
struct scsi_iopool *iop,
int flags);

void scsi_io_put(
struct scsi_iopool *iop,
void *io);

void scsi_ioh_set(
struct scsi_iohandler *ioh,
struct scsi_iopool *iop,
void (*cb)(void *, void *),
void *cookie);

void scsi_ioh_add(
struct scsi_iohandler *ioh);

void scsi_ioh_del(
struct scsi_iohandler *ioh);

void scsi_xsh_set(
struct scsi_xshandler *xsh,
struct scsi_link *link,
void (*cb)(struct scsi_xfer *));

void scsi_xsh_add(
struct scsi_xshandler *xsh);

void scsi_xsh_del(
struct scsi_xshandler *xsh);

The basic premise of iopools is that adapters provide
the midlayer with direct access to their own ccbs so it can
manage and schedule access to them. All access to those
ccbs must be via the midlayers API to these resources
so it can properly arbitrate access to them. In the iopool
API an adapter’s resource is referred to as an io.

An adapter sets up an iopool by calling
scsi iopool init. The adapter is responsible for pro-
viding the memory used by the iopool, which means
that an adapter can provide it as part of its own soft
state structure, rather than expecting the iopool API
to successfully allocate it itself. The adapter provides
a get function for the iopool API to take one of the
adapters ios, and a put function for returning that io once

a consumer has finished with it. The cookie argument to
scsi iopool init is provided so the adapter can provide a
unique identifier for which pool that is being accessed.

The get and put functions must not sleep as they could
possibly be called at interrupt time. The iopool API will
call the get function to see if an io is available. If the
adapter has no io available then it must simply return
NULL from its get handler. Any sleeping an io consumer
may need while waiting for an io is done by the iopool
API on behalf of the adapter.

This semantic greatly simplifies the adapters code
since it generally just has to test if a ccb is available on
a free list. It does not have to bother itself with moving
ccbs to sleeping processes, iopools takes that responsi-
bility on itself.

Internally an iopool is simply a list of consumers that
are waiting for an io. A consumer is represented on that
list as a callback function with a cookie thats passed to
the callback function along with an io. If an io is re-
turned from the adapters get function then the consumer
is dequeued and the callback is called. Once an iopool is
initialized it is then available for use by both the adapter
and midlayer to grant access to the adapters resources.

An adapter may request an io by calling scsi io get.
Once it has finished with the io it returns it to the iopool
via scsi io put. If the caller cannot sleep and no io is
available, scsi io get will return NULL. If the caller can
sleep then a list entry is allocated on the stack and put on
the iopools wait queue. The callback for this list entry
will simply move the io back to the callers process and
wake it up. When an io is returned, the iopool will check
if there are any consumers on the wait list, dequeue it and
call it with the now available io.

However, if the adapter wants to use an io but is not
able to sleep for it, it is able to register its own entry for
the iopools wait list with the scsi ioh API.

The scsi ioh API was modelled after OpenBSDs time-
out(9) API. It is the adapters responsibility to allocate a
scsi iohandler and initialize it using scsi ioh set before
calling scsi ioh add. If the adapter decides at some point
that it no longer wants to get an io it must remove it using
scsi ioh del.

An example of scsi iohandler usage can be found in
the mpi(4) and mpii(4) drivers. They receive notification
that a device has been removed in their interrupt han-
dlers. To correctly detach a device they must cancel and
outstanding transfers against this device, which requires
the use of a ccb so it can issue such a requests to the
firmware. Because they are in an interrupt context they
cannot sleep while waiting for a ccb, so instead they reg-
ister a scsi iohandler so they will get a callback when an
io becomes available.

Before iopools became available this code was opti-
mistic about getting hold of a ccb. If a ccb wasn’t avail-

8



able the code simply dropped the event on the floor. The
alternative was to implement the functionality now in
iopools in each and every driver that wanted reliable ac-
cess to their own resources.

An adapter provides a device access to an iopool by
configuring the template scsi link structure with it, or
it may specify it during the midlayers call to its device
probe routine.

This allows a lot of flexibility in how many iopools an
adapter may provide to the midlayer for devices to use.
For example, an adapter like mpi(4) has a single pool of
ccbs for all devices to use, so it may simply configure
the template scsi link structure. However, ATA adapters
have a separate pool of ccbs for each port, so they al-
locate and configure iopools during the call to its probe
handler for each target.

SCSI device drivers are more interested in using
scsi xfers rather than an adapters ccbs directly, but we
were interested in providing similar semantics for access
to these scsi xfers. The scsi xshandler API effectively
mirrors the scsi iohandler API, but deals with scsi xfers
instead of ccbs. Internally the scsi xshandler APIs also
properly account for the use of a devices own openings,
and implements a wait queue in front of them. Once a
scsi xshandler has got an opening it then goes through
the motions of getting an io from the adapter via the
scsi ioh API.

This means that the availability of scsi xfers for de-
vices to use directly maps to the availability of the
adapters io resources. If the adapter is unable to provide
an io then the device will wait until one becmes avail-
able. One an io becomes available it is associated with
the scsi xfer so that when it is executed by the adapter it
is guaranteed that it will succeed. Once again we return
to the semantic where if you were allocated an opening
you were guaranteed that the adapter has the resources to
actually execute it.

The scsi xs get API was rewritten to use
scsi xshandlers internally if it needed to sleep while
waiting for resources to become available.

The SCSI device drivers were rewritten to use a single
scsi xshandler to service I/O requests. When the block
layer queues an I/O, that xsh is added. If an opening
or adapter io is not available for it, the I/O will remain
on the devices queue and the block layer will be able to
queue further I/O. Further calls to scsi xsh add will not
affect the handlers current position on the queues.

As soon as the resources become available to the I/O
paths scsi xshandler, the callback that dequeues the I/O
and prepares it for a call to scsi xs exec. Once that I/O
has been executed, the driver checks to see if there are
further I/O requests pending. If so it calls scsi xsh add
again to say it has more work to do.

Because a call to scsi xsh add puts a handler on the

end of the wait list, multiple devices servicing their own
I/O queues will continually put themselves behind the
other. This effectively means all the devices schedule
themselves and cooperate so they have round-robin ac-
cess to the adapters resources.

A single device will always be putting its xsh on an
empty list, so it will immediately get access to any avail-
able resources, but as soon as another device wants ac-
cess to the same resources they will get round-robin ac-
cess.

iopools successfully solve the problems with the com-
mand allocation, distribution and scheduling that the
original midlayer featured, and the problems that became
apparent with NO CCB.

The scsi shutdown link function is provided to wake
up scsi xs get calls that are sleeping while waiting
for resources on a device that is going away. If
scsi xs get is sleeping and a device goes away, a call to
scsi shutdown link will cause it to get woken up and re-
turn NULL. Therefore it is important to always check for
a NULL return value from scsi xs get, even if you have
process context and always expect a scsi xfer.

Similarly, scsi iopool destroy performs the same
cleanup for any scsi io get calls that are waiting for an
io.

8 Fine Grained Locking

Because we were effectively rewriting the SCSI com-
mand handling and scheduling, it was relatively easy to
write the code using fine grain locks. The midlayer and
device drivers are largely SMP safe now along with sev-
eral adapter drivers. However, the effectiveness of these
changes is hard to test because the OpenBSD kernel is
still under a Big Giant Lock.

9 Hotplug

Recent effort has gone into providing APIs for adapters
to call when luns, devices, or entire busses of devices go
away, rather than having to implement that functionality
themselves (and inconsistently):

int scsi_probe_bus(
struct scsibus_softc *link);

int scsi_probe_target(
struct scsibus_softc *link,
int target);

int scsi_probe_lun(
struct scsibus_softc *link,
int target, int lun);

int scsi_detach_bus(
struct scsibus_softc *link,
int flags);

9



int scsi_detach_target(
struct scsibus_softc *link,
int target, int flags);

int scsi_detach_lun(
struct scsibus_softc *link,
int target, int lun, int flags);

int scsi_req_probe(
struct scsibus_softc *link,
int target, int lun);

int scsi_req_detach(
struct scsibus_softc * link,
int target, int lun, int flags);

int scsi_activate(
struct scsibus_softc *link,
int target, int lun, int act);

The scsi probe , scsi detach and scsi activate func-
tions are simply wrappers around the kernels own de-
vice autoconf routines, except that they also update the
midlayer’s state. Just like the kernels attach and detach
routines, you must be in a process context to call the
scsi attach or scsi detach routines.

The scsi req functions provide a way for adapters that
detect a topology change in an interrupt context to re-
quest a call to scsi attach or scsi detach from a process
context later on. Currently these attach and detach re-
quests are run out of the systems workq.

The current midlayer requires that a device
be deactivated by a call to scsi activate with
DVACT DEACTIVATE passed as the activity be-
fore the call to scsi detach.

The SCSI layer has long supported the ability to add
and remove devices at runtime but was quite optimistic
about the state of in flight transactions when removing
a device. When detaching a device the midlayer now
waits until all the outstanding operations on the device
have completed before allowing the softwares state to be
deallocated.

Once upon a time the adapter and midlayer would
grant devices a number of outstanding operations it was
allowed to queue, referred to as openings. The only ac-
counting done for operations on a device was to decre-
ment the openings as they were used until it hit zero, and
as operations completed the number of openings was in-
cremented again. The problem with this is you don’t
know how many openings you had so you cannot tell
if you’re using any or not. The midlayer was changed
to leave the openings value alone and count the number
of pending operations separately. When detaching the
driver the midlayer will sleep on a device until all the
outstanding commands have completed, thereby avoid-
ing a lot of potential use after frees.

This does put a lot of responsibility onto adapter
drivers to clean up any commands associated with a de-

vice thats going away. Previously it was possible for the
transfers currently on the hardware to a detached device
to stay in that state and never complete, the device driver
was happily able to detach and the system would con-
tinue running.

In this situation the hardware must return all the com-
mands that are outstanding for the device before the
driver is able to detach. Because the attach and detach
routines are generally run out of the systems workq, un-
less all outstanding operations have been completed the
system will unable to continue processing tasks in that
same queue.

10 Sparse LUNs

The SCSI midlayer used to keep pointers to the devices
that were attached to it in an array called sc link that was
sized by the number of targets and luns the adapter could
support. For example, traditional SCSI controllers sup-
ported a bus width of 8 with 8 possible luns at each tar-
get, so the midlayer would allocate a two dimensional
array of 8 by 8 pointers for sc link. If a device was
found at target 1, lun 0, a pointer to it would be stored
in sc link[1][0], target 6, lun 5 would go in sc link[6][5].

However, time has moved forward and bus widths on
some adapters (especially )SAS and Fibre Channel) can
be as high as 512, and in modern SCSI standards the lun
is a 64bit value. It is impractical to allocate an array of
pointers of this size since it would exhaust the physical
memory of a machine, and it is rather pointless as busses
of that size are relatively sparsely populated.

The midlayer was modified to store the location of
child devices in a list rather than the array described
above. If something needs to check if a device exists at
a particular address on the bus it simply iterates over this
list. This is a very rare operation and therefore doesn’t
need to be as highly optimized as the array implementa-
tion was.

11 Remaining Work

Now that the changes described above are part of the
OpenBSD SCSI stack, the main work remaining is up-
dating all 80 SCSI hardware adapter drivers to properly
use the new mechanism.

At the moment only a few of the adapter drivers have
been updated to use all of the new features. There is
a lot of testing on interesting hardware remaining, and
volunteers are actively sought to help.

10



12 Results

The OpenBSD SCSI stack is significantly more robust,
scalable and maintainable as a result of the changes im-
plemented over the last two years.

As part of the effort of updating the hardware adapter
drivers, an interesting accident of history was brought
to light, This was the decision to emulate SCSI on top
of hardware RAID controllers. Generally other operat-
ing systems implement a separate (but minimal) stack
for hardware RAID controllers that allows the adapter
to process block I/O requests directly, but OpenBSD has
always emulated SCSI on top of these controllers. It is
our belief that this has been beneficial since the improve-
ments to the SCSI midlayer have avoided the need to port
similar improvements to an alternative stack for RAID
devices. It is this belief that has lead to the development
of a SCSI to ATA translation layer so ATA hardware can
also inherit from improvements to the SCSI subsystem.

13 Acknowledgments

We would like to thank the OpenBSD developer and user
communities for their support in implementing and test-
ing these SCSI changes.

In particular we want to acknowledge the work done
by Matthew Dempsky (matthew@openbsd.org) who,
from a standing start, made immediate and significant
contributions to this work.

14 Availability

All the changes made the to SCSI subsystem, ie, its mid-
layer, SCSI device drivers, and adapter drivers, have been
committed and are a part of OpenBSD right now.

11


