
A new malloc(3)
for OpenBSD

Otto Moerbeek
otto@openbsd.org

mailto:otto@openbsd.org
mailto:otto@openbsd.org

Developer since 2003

Mainly userland work: patch, diff, dc, bc, privilege separated
tcpdump, libc, ntpd, ...

But also some kernel work: large partitions, ffs2 integration,
time code

Me?

What’s malloc(3)?

Kernel knows two ways of giving memory to an application:
sbrk(2) and mmap(2)

malloc takes memory from the kernel and manages it for the
application

so what’s managing?

Managing memory

 void *malloc(size_t): get the application a region of
memory

 free(void *): release the memory

 void *realloc(void *, size_t): resize, preserving
contents as far as possible

Details: alignment, 0 size, what happens to released memory?

Original *BSD malloc
By Poul-Henning Kamp

Get a contiguous region of memory from kernel using sbrk(2)

Grow it when more is needed

Manage pages by keeping an index, including free list. Index contains
status per page.

Manage chunk (sub page sized regions) by dividing a page and
maintaining a bit map per chunk page

Original BSD malloc II

Very predictable behavior

Released memory can only be returned to the kernel in rare
circumstances

Meta data can leak to application, though more recent code
in NetBSD uses mmap’ed memory for the page index.

Predictability is bad

See for example the work of Ben Hawkes

e.g. call free with a pointer, and that pointer will at some
point be returned via malloc, even if the application is still
using it!

In combination with application bugs, this can be exploited

Next for OpenBSD

A mmap(2) based malloc.

mmap on OpenBSD returns range of pages at a random
location

Page dir was modified to allow for non-contiguous ranges of
pages

Linked list of page dir pages

Nice properties

Addresses become more unpredictable

Pages next to an allocated area are likely unmapped: free
overrun protection

Initially the page dir and free list were malloc’ed themselves,
but that was changed later

Not so nice

Due to caching of free pages, predictability comes back (at
least partially)

Free list maintenance might need memory to free memory

For large address spaces, the page dir becomes very sparse

Design goals

Simple

Unpredictable

Fast

Less metadata space overhead

Robust, e.g. freeing of a bogus pointer or a double free
should be detected

Meta data

Keep track of mmap’ed regions by storing their address and
size into a hash table

Keep existing data structure for chunk allocations

A free region cache with a fixed number of slots

App data

Chunk bitmaps
dir info

Hash table

Free regions cache

Overview of metadata

The hash table

The pointers returned
by mmap are already
random

Simple hash function
collapsing the bits

struct region_info {
 void *p; /* page; low bits used
 to mark chunks */
 uintptr_t size; /* size for pages, or
 chunk_info pointer */
};

static inline size_t hash(void *p)
{
 size_t sum;
 union {
 uintptr_t p;
 unsigned short a[sizeof(void *) /
 sizeof(short)];
 } u;
 u.p = (uintptr_t)p >> MALLOC_PAGESHIFT;
 sum = u.a[0];
 sum = (sum << 7) - sum + u.a[1];
#ifdef __LP64__
 sum = (sum << 7) - sum + u.a[2];
 sum = (sum << 7) - sum + u.a[3];
#endif
 return sum;
}

Insert
Hash table is
grown if too full

Too full is >75%
slots filled

static int
insert(struct dir_info *d, void *p, size_t sz)
{
 size_t index, mask;
 void *q;

 if (d->regions_free * 4 < d->regions_total) {
 if (omalloc_grow(d))
 return 1;
 }
 mask = d->regions_total - 1;
 index = hash(p) & mask;
 q = d->r[index].p;
 STATS_INC(d->inserts);
 while (q != NULL) {
 index = (index - 1) & mask;
 q = d->r[index].p;
 STATS_INC(d->insert_collisions);
 }
 d->r[index].p = p;
 d->r[index].size = sz;
 d->regions_free--;
 return 0;
}

Delete
Straightforward
from Knuth

On delete, restore
state as if the
deleted item was
never there

Nice properties, as
long as the hash
function is good

static void
delete(struct dir_info *d, struct region_info *ri)
{
 /* algorithm R, Knuth Vol III section 6.4 */
 size_t mask = d->regions_total - 1;
 size_t i, j, r;

 d->regions_free++;
 i = ri - d->r;
 for (;;) {
 d->r[i].p = NULL;
 d->r[i].size = 0;
 j = i;
 for (;;) {
 i = (i - 1) & mask;
 if (d->r[i].p == NULL)
 return;
 r = hash(d->r[i].p) & mask;
 if ((i <= r && r < j) || (r < j && j < i) ||
 (j < i && i <= r))
 continue;
 d->r[j] = d->r[i];
 break;
 }
 }
}

Free regions cache
Regions free’ed are kept for later reuse

Large regions are unmapped directly

If the number of pages cached gets too large, unmap some.

Randomized search for fitting region, so region reuse is less
predictable

Optionally, pages in the cache are marked PROT_NONE

Some nice properties
Amortized cost of insert, find and delete are
low

Speed tests indicate a a 30% speedup
compared to old malloc, though the gains are
less in the final version due to more
randomization in chunk allocation.

 free(bogus) is caught

Memory is given back to kernel

Calloc
 calloc(3): since pages returned by mmap are zero-filled,
we do not need to zero them ourselves. We can use that for
>= page sized allocations

Nicely avoids page references until the pages are actually
used

Realloc
Try to mmap next to the existing region if we are growing. There’s a
high chance it’s available

mmap

p

p

high addresseslow addresses

q r

q r
If this doesn’t work out, fall back to new alloc and copy

PROT_READ is your friend

Originally dir_info was in the bss section, having a predictable
address

Work by Damien Miller (djm@): protect dir_info and malloc
options by mmap’ing the memory containing them and using
PROT_READ to make it read only (optionally for page_dir)

dir_info and chunk_info protected by canaries

Special
Allocations between half a page and a page need a full
page.

Buffer overruns are more common than buffer underruns

Taking into account alignment restrictions, we can shift the
returned pointer so that the end of the region is near the end
of the page

An ancient bug in the code generated by yacc was discovered

Summary
Faster
More simple
Never needs memory to free memory
Robust
Meta-data completely out-of-band
Randomization in page, chunk, allocation and freeing.
Since OpenBSD 4.4

Improvements?

Lock contention for threaded apps

Chunk randomization across multiple pages

Improve kernel data structures to better handle fragmented
vm

sbrk(2) is still supported; this decreases available memory
for apps, especially on 32-bit architectures

Thanks
The OpenBSD community

Especially Theo de Raadt en Damien Miller

This audience

