
Implementation of Xen PVHVM drivers in OpenBSD

Mike Belopuhov
Esdenera Networks GmbH
mike@esdenera.com

Abstract
OpenBSD 5.9 will include a native implemen-
tation of Xen PVHVM drivers. It was written
from scratch to facilitate simplicity and main-
tainability. One of major goals of this effort is
to run OpenBSD images in the Amazon cloud.

1 Introduction

Xen virtual machine monitor provides two
types of guest hosting depending on the under-
lying hardware: paravirtualized and hardware
assisted virtualization mode when a CPU with
virtualization extensions (AMD-V or Intel VT-
x) is used.

At the same time guests running in the hard-
ware assisted virtualization mode are not re-
stricted access to the paravirtualized facilities
via the hypercall interface normally used by the
paravirtualized instances.

We will explore what facilities are provided
and how an HVM guest can combine emulated
PCI device tree and interfaces provided via par-
avirtualization.

2 Guest domain initialization

In order to gain access to the paravirtualized
services the guest must take a few steps in order
to identify the hypervisor and setup the hyper-
call interface.

In OpenBSD a pvbus(4) pseudo bus abstrac-
tion takes care of identifying the type of the hy-
pervisor via a CPUID signature and probes for
child devices using a standard config(9) frame-
work for that.

Xen nexus device that performs domU setup
is implemented as a xen(4) device driver that
also acts as an attachment point for other vir-
tual devices configured in the virtual machine
settings.

3 The hypercall interface

In order to be able to perform different oper-
ations like configuring devices, virtual inter-
rupts or simply fetching information from the
dom0, Xen makes use of a hypercall interface
which works similar to the syscall(9) interface
that provides a VMEXIT event on the hypervi-
sor side.

The guest allocates a page of memory within
the kernel’s code segment and communicates
its location in the physical memory to the hy-
pervisor via an MSR write that fills it with
content. Upon inspection the content of the
page contains SGDT instructions at offsets rep-
resenting different hypercalls.

Since OpenBSD virtual memory subsystem
doesn’t implement a proper way to allocate
memory pages that can be later called into for
various reasons, a code segment of the kernel
itself had to be extended by one page. And



while this is a rather straightforward modifica-
tion, perhaps a randomized location would suit
it better.

Via the established hypercall interface other
parameters of the system can be learned, for
example extended version, enabled virtual ma-
chine features, etc.

Unlike other implementations, OpenBSD
uses a single hypercall function that is defined
as a variable argument function and expands
the parameter list in order to construct hyper-
call arguments.

4 Shared Information Page

One of several basic ways of communicating
information to the hypervisor and back to the
guest system is using shared memory pages.
The Shared Information Page is a specialized
page of memory that provides guests access
to the bitmap of masked and pending event
channel ports events as well as other informa-
tion, such as RTC, TSC, and information about
NMIs.

The guest system must allocate a page of
memory that has both physical and virtual map-
pings, for example via malloc(9), and commu-
nicate it’s frame number (a number of page
sized increments) to the hypervisor via a mem-
ory operation hypercall.

Shared Information Page also includes a run-
ning cycle counter and a wall clock so it should
be possible in the future to turn this into a sys-
tem timecounter. In fact the PVCLOCK inter-
face used by Linux is implemented this way.

5 The interrupt subsystem

There are two ways for a Xen hypervisor to in-
ject an interrupt request into the system: via an
Interrupt Descriptor Table vector that has been
allocated by the guest solely for these purposes
and via a virtual PCI device, the XenStore Plat-
form Device.

Once triggered a guest operating system
must run an interrupt vector that traverses a
pending event channel ports bitmap inside the
Shared Information Page to establish which
ports have triggered the event.

A xen intr establish() method is provided
in order to setup a callback that will be exe-
cuted by the interrupt vector when associated
event port is pending in the event channel ports
bitmap. In many cases the event port number is
not known in advance and can be allocated by
the aforementioned method itself. Likewise a
xen intr disestablish() can be called to remove
the binding.

During system startup and device driver ini-
tialization interrupts remain masked and are un-
masked after the root filesystem is mounted.
Device drivers are required to operate in the
polling mode until interrupts are enabled.

After startup is finished, device drivers
can mask and unmask their interrupt sources
at will via calls to xen intr mask() and
xen intr unmask().

Unlike other implementations, we have in-
cluded support for marking Xen upcall inter-
rupts as pending to integrate interrupt process-
ing better with the rest of the system, e.g. to
ensure that interrupt handler is not reentrant.

5.1 Interrupts: the IDT method
When indicated by the virtual machine features
a guest system may communicate an allocated
Interrupt Descriptor Table vector to the hyper-
visor to deliver the interrupt directly into the
system without the help of an emulated APIC.

To set up an IDT vector a system must es-
tablish a link between an IDT vector number
in a range of 0-255 and a callback function via
an IDT gate descriptor. OpenBSD groups IDT
vector numbers according to which Interrupt
Priority Level they represent. IPL NET prior-
ity is used for Xen interrupt vector and there-
fore the first vector 0x70 in that group has been
reserved for it.



Due to the fact that this interrupt vector is
not established via a PIC-compatible interface
low level interrupt stub functions that basically
implement pending interrupt processing cannot
be used for our interrupt vector. Instead a set of
new functions akin to those used for the LAPIC
timer is rolled to provide this functionality.

5.2 Interrupts: Platform Device

As an alternative to the IDT method, domU
guest implementing PCI bus discovery can im-
plement a driver for the XenSource Platform
Device, 0x5853:0x0001. This device provides
a level triggered interrupt wired to the emulated
APIC and once it’s set up, Xen can be made
aware of it.

A driver xspd(4) has been implemented for
this device that configures the Xen interrupt
vector to call the Xen upcall when the IDT
method is not available.

6 Grant tables

Grant tables represent a mechanism of passing
references to pages of memory allocated by the
guest across domains. In essence it’s similar
to the IOMMU mechanism where device vis-
ible addresses are translated into physical ad-
dresses but in this case device visible addresses
are represented as indexes into the grant table
and point to a grant table entries.

Grant table entries contain a frame number
and access flags that are set up when one do-
main wants to provide access to its own mem-
ory to the other domain. Upon startup the hy-
pervisor sets an upper limit on how many grant
table frames can be used by the guest system.

OpenBSD implements a bus dma(9) [1] ab-
straction on top of grant tables. It defines a new
bus dma tag that contains methods that wrap
underlying bus dmamap * functions in a way
that the memory managed by this underlying
methods gets accounted for by the grant tables

as well.
This allows drivers for paravirtualized de-

vices to take advantage of a standard approach
to DMA memory management. The first step
is to create a DMA map that records meta in-
formation about the mapping that will be per-
formed later. It records number of segments,
their sizes and a total size of the mapping. Due
to the limitation of grant tables, only the page
sized segments are currently supported. The
wrapper of bus dmamap create() allocates an
additional array of entries that will be used
to map physical addresses of map segments
to grant table references. At the same time
grant table entries for all map segments are re-
served via xen grant table alloc(). This array
of entries is then set as a DMA map cookie.
A wrapped bus dmamap destroy() method can
free those references and destroy the map.

Not all bus dma(9) methods need to be
wrapped. For instance memory allocation and
KVA mapping functions bus dmamem alloc()
and bus dmamem map() as well as their de-
structive counterparts don’t need any special
handling.

However in order to establish associations
between physical addresses of DMA memory
segments and grant table references wrapped
versions of bus dmamap load() family of
functions is required. After calling the system
bus dmamap load() method a wrapper needs

to go through all map segments represented
by the dm segs member of the bus dmamap t
structure, associate them with grant table ref-
erences and update entries in the grant table
via xen grant table enter(). Upon success the
physical address of the segment ds addr is re-
placed with the grant table reference. After this
call, the driver can pass this reference to the
other domain via a ring descriptor or a similar
mechanism.

To remove the mapping a
bus dmamap unload() method wrapper

calls the xen grant table remove() and puts
physical addresses back into the ds addr before



grant table entry 0

grant table entry 1

grant table entry 2

...

page 1

page 2

page 3

segment 0

segment 1

segment 2

_dm_cookie
reference 0

reference 1

reference 2

Grant Table page

Memory pages

bus_dmamap_t object

Mapping table

Figure 1: Interfacing Grant Tables with bus dma load(9)

calling to the system function.

7 XenStore

The XenStore is a hierarchical filesystem like
property storage system that can be accessed
via an interrupt driven producer/consumer ring
interface in order to learn about configured vir-
tual devices and their properties. This extends
the hypercall interface with various information
in the ASCII string format.

The XenStore ring page is usually allocated
by the hypervisor and has to be mapped in by
the guest into it’s kernel virtual memory space
via a call to the pmap kenter pa(). The physical
address of the page is fetched with a hypercall.
The event channel port for XenStore is also pre-
allocated and can be learned via a hypercall as
well.

The two most important hierarchies available
throught the XenStore interface are “device/”
and “backend/” that represent available virtual
devices and their backend counterparts. Con-
figuring these devices in large part requires set-
ting properties within these hierarchies.

To issue a set of pre-defined commands a
common interface akin to SCSI command sub-
mission was implemented. xs cmd() takes an
operation code, a node that the operation is per-
formed upon as well as matrix of iovec struc-

tures. Depending on whether it’s a read or a
write operation the iovec matrix is ether allo-
cated and returned by the XenStore driver or in
case of a write operation by the callee. In case
the matrix was allocated by the driver it needs
to be disposed of by calling xs resfree().

A simpler property accessor interface
xs getprop() and xs setprop() was introduced
for when complexity of a generic xs cmd() is
not required.

Extensive string parsing in the kernel was
avoided by providing a simple iovec based in-
terface thus multiple independent strings are re-
turned back to the caller as an array of vectors.
Other parts of the infrastructure are required to
perform data conversions and manipulations on
their own which in most cases not strictly re-
quired as string comparisons cover most of the
use cases.

8 Power management facilities

Xen provides a few power management capa-
bilities to the controlling domain, namely it al-
lows to signal halt, reboot and suspend events
to the guest. In order to receive these events a
guest is required to install a notification on the
“control/shutdown” node via a XenStore watch
operation.

Once installed, an asynchronous event mes-



sage will be delivered to the guest that will re-
quire it to read the “control/shutdown” property
and act accordingly.

To execute an event callback in a safe envi-
ronment it’s scheduled via a task add(9) to exe-
cute in the shared system task queue (systq) un-
der the kernel lock. This allows us to perform
graceful shutdown and reboot operations.

9 Virtual device attachment

In order for the guest to probe for virtual de-
vices a XenStore directory listing operation
must be issued for the “device/” node and then
for every subdirectory of it another listing oper-
ation must be performed. This produces nodes
like “device/vif/0” and “device/vif/1” that rep-
resent different virtual devices that have been
configured for this virtual machine instance.

A standard procedure in this case is to uti-
lize the BSD autoconfiguration framework [2]
and specifically config found(9) in order to at-
tach devices configured in the kernel configura-
tion file. For instance if “xnf* at xen0” config-
uration option is included in the kernel config
file a specified match function for the xnf(4) de-
vice will be called and the driver can determine
whether or not it should proceed with attach-
ment. This decision is based on the provided
xen attach args structure that records the node
name and a few other bits of information to sup-
port device attachment procedure.

Default configuration of virtual networking
interfaces employed by Xen allows for both
paravirtualized and legacy PCI drivers to at-
tach to the same network interface. It’s done
this way in order to simplify VM configuration
and provide a simple fallback method. Thus
it’s imperative for the virtual network interface
to claim ownership of the device and instruct
the hypervisor to exclude the legacy PCI de-
vice from the PCI device tree. This is done
via an I/O port operation once xnf(4) driver fin-
ishes the attachment process. This allows sys-

tem operators to disable xnf(4) driver in the ker-
nel via config(8) or User Kernel Config during
boot and fall back to the legacy device driver
without recompiling the kernel.

10 Virtual network interface

A driver for the virtual network interface is
based around the idea that receive and transmit
ring descriptors take grant table references to
the networking stack buffers instead of phys-
ical addresses that regular hardware counter-
parts do.

Both receive and transmit rings are allo-
cated as contiguous chunks of memory so that
they can be associated with a single grant ta-
ble reference. These grant table references are
passed to the hypervisor as device properties
“rx-ring-ref” and “tx-ring-ref” accordingly.

Each receive and transmit descriptor has its
own grant table reference pointing to a single
buffer not exceeding a page in size. In order to
support fragmented chains in the transmission
code path we need to ensure that the chain is not
longer than 18 fragments (when scatter-gather
operation is supported by the backend) and then
extract each individual memory buffer in order
to load it into the transmit descriptor map and
associate with a transmit descriptor. This effec-
tively transposes a tree like structure of a ring
of mbuf chains into a flat ring of buffers that
Netfront implements.

In order to tell the hypervisor that the device
is ready to receive network traffic a state prop-
erty needs to be set to the connected state value.

Driver supports receive and transmit
TCP/UDP checksum offloading for both IPv4
and IPv6 packets. One of the quirks when
dealing with checksums turns out to be almost
exact emulation of Linux checksum offloading
by Xen Netfront that seems to conflict with
how OpenBSD IPv4 checksum offloading is
supposed to work in conjunction with protocol
checksum offloading.



11 Operation in the Amazon EC2

Antoine Jacoutot and Reyk Flöter did a great
job with providing OpenBSD development im-
ages in the Amazon cloud. In order to create
and upload an OpenBSD image ready to be de-
ployed as an AMI a script 1 by Antoine can
be used. It depends on on the “sysutils/ec2-
api-tools” package and automates creation of a
freshly installed OpenBSD system with an ad-
ditional rc script that fetches SSH key and con-
figures the primary networking interface.

12 Future Work

One of the issues exposed by the Netfront is
lack of hardware interrupt moderation for the
receive ring and therefore it’s becomes some-
what easy to mount DoS attacks against it.
Since OpenBSD does not have an infrastructure
to polling mode of operation for networking in-
terfaces we need to implement additional coun-
termeasures.

To ensure compatibility with existing migra-
tion techniques we need to implement full sus-
pend/resume functionality. It’s controlled by
the same “control/shutdown” node. In order to
suspend the system a few steps must be taken
such as disabling interrupts and after that a hy-
percall is issued that upon return signals either
resume or a cancelled suspend.

A diskfront driver can be implemented to
support paravirtualized storage devices. Pos-
sible benefits include speed improvements and
potentially support for hot-pluggable storage
devices such as Amazon S3 volumes.

Support for a native timecounter should be
fairly easy to implement given that the Shared
Information Page provides most of the data al-
ready.

1https://github.com/ajacoutot/aws-openbsd

13 Conclusion

This effort has proven that all of the Xen
PVHVM infrastructure can be implemented in
about 2500 lines of code with comments (ex-
cluding device drivers) in just a few C files
(/sys/dev/pv/xen.c and /sys/dev/pv/xenstore.c)
and a few header files (/sys/dev/pv/xenvar.c and
/sys/dev/pv/xenreg.h). Existing and well-known
system abstractions such as bus dma(9) can be
used to keep device driver implementation sim-
ple and comprehensible.

Acknowledgments
The author would like to thank Esdenera Net-
works GmbH for funding this work, OpenBSD
developers, especially Reyk Flöter, Mark Ket-
tenis, Martin Pieuchot, Antoine Jacoutot, Mike
Larkin and Theo de Raadt for productive dis-
cussions and code reviews. Huge thanks to all
our users who took their time to test, report
bugs, submit patches and encourage develop-
ment.

Availability
Scheduled to become available in OpenBSD
5.9. The whole stack will be enabled in the
default “GENERIC” kernel as well as install
ramdisk kernel “RAMDISK CD”, not requir-
ing users to build their own kernels or install
media.

References

[1] Jason Thorpe, A Machine-Independent
DMA Framework for NetBSD, Usenix
1998 Annual technical conference.

[2] Chris Torek, Device Configuration in
4.4BSD, Lawrence Berkeley Laboratory,
1992.


