
SMP Implementation
for OpenBSD/sgi
Takuya ASADA<syuu@openbsd.org>

mailto:syuu@openbsd.org
mailto:syuu@openbsd.org

Introduction
• I was working to add SMP & 64bit support to

a BSD-based embedded OS at
The target device was MIPS64

• There’s no complete *BSD/MIPS SMP
implementation at that time, so I implemented it

• The implementation was proprietary, but I wanted
to contribute something to BSD community

• I decided to implement SMP from scratch, tried to
find a suitable MIPS SMP machine

Finding MIPS/SMP
Machine(1)

• Broadcom SiByte BCM1250 looks nice -
2core 1GHz MIPS64, DDR DRAM, GbE,
PCI, HT

• Cisco 3845 integrated this processor

• How much is it?

Finding MIPS/SMP
Machine(1)

• Broadcom SiByte BCM1250 looks nice -
2core 1GHz MIPS64, DDR DRAM, GbE,
PCI, HT

• Cisco 3845 integrated this processor

• How much is it?

from $14,200!
 Totally unacceptable!!!

Finding MIPS/SMP
Machine(2)

• Some antique SGI machines are available on
eBay

• These are basically very cheap

• I realized SGI Octane 2 has 2 cores, already
supported by OpenBSD

Finding MIPS/SMP
Machine(2)

• Some antique SGI machines are available on
eBay

• These are basically very cheap

• I realized SGI Octane 2 has 2 cores, already
supported by OpenBSD

Just $33!
Do you remember how much was it?

This is my Octane2

Processors MIPS R12000 400MHz x2

Memory 1GB SDRAM

Graphics 3D Graphics Card

Sound Integrated Digital Audio

Storage 35GB SCSI HDD

Ethernet 100BASE-T

Become an OpenBSD
developer

• I started working on Octane2 since Apr
2009, wrote about on my blog

• Miod Vallat discovered it, suggested my
code be merged into OpenBSD main tree

• I become an OpenBSD developer in Sep
2009, started merging the code, joined
hackathon, worked with Miod and Joel Sing

NOW IT WORKS!!!!

• Merged into OpenBSD main tree

• You can try it now!

• It seems stable -
I tried “make build” again and again over a
day, it keeps working

Demo
Open Youtube movie by click “Demo”

http://www.youtube.com/watch?v=EXWYSAnEu_8
http://www.youtube.com/watch?v=EXWYSAnEu_8

!"

#!!"

$!!"

%!!"

&!!"

'(!!!"

'(#!!"

'($!!"

'(%!!"

'(&!!"

")*'" ")*#" ")*+"

,-.-/01)02+!"

,-.-/01)02+!342"

Performance -
kernel build benchmark

4% overhead

46% speed up

(sec)

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

"'($" "'(%" "'(&"

)*+*,-."

)*+*,-./01"

Performance -
OpenBSD/amd64 for comparison

2% overhead

44% speed up

(sec)

What did we need to
do for the SMP work

• Support multiple cpu_info
and processor related
macros

• Move per-processor data into
cpu_info

• Implement lock primitives

• Acquiring giant lock

• Implement atomic operations

• Spin up secondary
processors

• Secondary processor entry
point

• IPI: Inter-Processor Interrupt

• Per-processor ASID
management

• TLB shootdown

• Lazy FPU handling

• Per-processor clock

There were lots of works...

Describe it more
simply

We can classify tasks into three kind of
problems:

• Restructuring per-processor informations

• Implement and use lock/atomic primitives

• Hardware related problems

Restructuring per-
processor informations
• In the original sgi port, some informations which

related the processor are allocated only one

• Simple case:
Information is stored into global variable
Move it into “cpu_info”, per-processor structure

• Complex case:
In pmap, we need to maintain some information
per-processor * per-process

Simple case -
clock.c: original code

// defined as global variables
 u_int32_t cpu_counter_last;
 u_int32_t cpu_counter_interval;
 u_int32_t pendingticks;

uint32_t clock_int5(uint32_t mask, struct trap_frame *tf)
...
 clkdiff = cp0_get_count() - cpu_counter_last;
 while (clkdiff >= cpu_counter_interval) {
 cpu_counter_last += cpu_counter_interval;
 clkdiff = cp0_get_count() - cpu_counter_last;
 pendingticks++;

Simple case -
clock.c: modified code

uint32_t clock_int5(uint32_t mask, struct trap_frame *tf)
...
 struct cpu_info *ci = curcpu();
 clkdiff = cp0_get_count() - ci->ci_cpu_counter_last;
 while (clkdiff >= ci->ci_cpu_counter_interval) {
 ci->ci_cpu_counter_last +=
 ci->ci_cpu_counter_interval;
 clkdiff =
 cp0_get_count() - ci->ci_cpu_counter_last;
 ci->ci_pendingticks++;

Complex case: pmap
• MIPS TLB entries are tagged with 8bit process id called ASID,

used for improve performance
MMU skips different process TLB entries on lookup
We won’t need to flush TLB every context switches

• Need to maintain process:ASID assign information
because it’s smaller than PID, we need to rotate it

• The information should keep beyond context switch

• We maintain ASID individually per-processor

• What we need is:
ASID information per-processor * per-process

Complex case - pmap.c:
original and modified code

uint pmap_alloc_tlbpid(struct proc *p)
...
 tlbpid_cnt = id + 1;
 pmap->pm_tlbpid = id;

uint pmap_alloc_tlbpid(struct proc *p)
...
 tlbpid_cnt[cpuid] = id + 1;
 pmap->pm_tlbpid[cpuid] = id;

Implement and use
lock/atomic primitives
• Needed to implement

• lock primitives: mutex, mp_lock

• atomic primitives: CAS, 64bit add, etc..

• Acquiring giant lock prior to entering the kernel
context

• hardware interrupts

• software interrupts

• trap()

Acquiring giant lock on
clock interrupt handler

uint32_t clock_int5(uint32_t mask, struct trap_frame *tf)
...
 if (tf->ipl < IPL_CLOCK) {
#ifdef MULTIPROCESSOR
 __mp_lock(&kernel_lock);
#endif
 while (ci->ci_pendingticks) {
 clk_count.ec_count++;
 hardclock(tf);
 ci->ci_pendingticks--;
 }
#ifdef MULTIPROCESSOR
 __mp_unlock(&kernel_lock);
#endif

Acquiring giant lock on
clock interrupt handler

uint32_t clock_int5(uint32_t mask, struct trap_frame *tf)
...
 if (tf->ipl < IPL_CLOCK) {
#ifdef MULTIPROCESSOR
 __mp_lock(&kernel_lock);
#endif
 while (ci->ci_pendingticks) {
 clk_count.ec_count++;
 hardclock(tf);
 ci->ci_pendingticks--;
 }
#ifdef MULTIPROCESSOR
 __mp_unlock(&kernel_lock);
#endif

Actually, it causes a bug... described later

Hardware related
problems

• Spin up secondary processor

• Keeping TLB consistency by software

• Cache coherency

Spin up secondary
processor

• We need to launch secondary processor

• Access hardware register on controller device
to power on the processor

• Secondary processor needs own bootstrap code

• Has to be similar to primary processor’s one

• But we won’t need kernel, memory, and device
initialization

• Because primary processor already did it

Keeping TLB consistency
by software

• MIPS TLB doesn’t have mechanism to keep
consistency, we need to do it by software
Just like the other typical architectures

• Invalidate/update other processor’s TLB
using TLB shootdown

• It implemented by IPI
(Inter-Processor Interrupt)

Cache coherency

• MIPS R10000/R12000 processors have full
cache coherency

• We don’t have to care about it on Octane

• But, some other processors haven’t full
cache coherency

Ideas implementing
SMP

• We have faced a number of issues while
implementing SMP

• Fighting against deadlock

• Dynamic memory allocation without
using virtual address

• Reduce frequency of TLB shootdown

Fighting against
deadlock

• It’s hard to find the cause of deadlocks
because both processors runs concurrently

• It causes timing bugs -
conditions are depend on timing

• Need to be able to determine what
happened on both processors at that time

• There are tools for debugging it

JTAG ICE

• Very useful for debugging

• We can get any data for debugging on
desired timing, even after kernel hangs

• I used it when I was implementing SMP for
the embedded OS

• Not for Octane, there’s no way to connect

ddb

• OpenBSD kernel has in-kernel debugger, named ddb

• We can get similar data for JTAG ICE, but kernel
need to alive - because it’s part of the kernel

• Missing features:
We hadn’t implemented “machine ddbcpu<#>” -
which is processor switching function on ddb
Without this, we can only debug one processor
which invoked ddb on a breakpoint

• Not always useful

printf()
• Most popular kernel debugging tool

• Just write printf(message) on your code, Easy to use ;)

• Unfortunately, it has some problems

• printf() wastes lot of cycles, changes timing between
processors
We may miss timing bug because of it

• Some point of the code are printf() unsafe
causes kernel hang

• We use it anyway

Divide printf output for
two serial port

• There’s two serial port and two processors

• If we have lots of debug print, it’s hard to
understand which lines belongs to what processor

• I implemented dirty hack code which output
strings directly to secondary serial port, named
combprintf()

• Rewrite debug print to
primary processor outputs primary serial port,
secondary processor outputs secondary serial port

What do we need to
print for debugging?
• To know where the kernel running roughly

• put debug print everywhere the point
kernel may running through

• dump all system call using
SYSCALL_DEBUG

• How can we determine a deadlock point?

Determine a deadlock
point

• Deadlocks are occurring on spinlocks

• It loops permanently until a condition
become available, but that condition never
comes up

• At least to know which lock primitives we
stuck on, we need to stop permanent loop
by implementing timeout counter and print
debug message

Adding timeout
counter into mutex

void mtx_enter(struct mutex *mtx)
...
 for (;;) {
 if (mtx->mtx_wantipl != IPL_NONE)
 s = splraise(mtx->mtx_wantipl);
 if (try_lock(mtx)) {
 if (mtx->mtx_wantipl != IPL_NONE)
 mtx->mtx_oldipl = s;
 mtx->mtx_owner = curcpu();
 return;
 }
 if (mtx->mtx_wantipl != IPL_NONE)
 splx(s);
 if (++i > MTX_TIMEOUT)
 panic("mtx deadlocked\n”);
 }

Adding timeout
counter into mutex

void mtx_enter(struct mutex *mtx)
...
 for (;;) {
 if (mtx->mtx_wantipl != IPL_NONE)
 s = splraise(mtx->mtx_wantipl);
 if (try_lock(mtx)) {
 if (mtx->mtx_wantipl != IPL_NONE)
 mtx->mtx_oldipl = s;
 mtx->mtx_owner = curcpu();
 return;
 }
 if (mtx->mtx_wantipl != IPL_NONE)
 splx(s);
 if (++i > MTX_TIMEOUT)
 panic("mtx deadlocked\n”);
 }

But, this is not enough

Why it’s not enough
CPU A CPU B

Lock
A

Acquires lock

Spins until released

Lock
B

Acquires lock

Spins until released

Why it’s not enough
CPU A CPU B

Lock
A

Acquires lock

Spins until released

Lock
B

Acquires lock

Spins until released
We can break here

Why it’s not enough
CPU A CPU B

Lock
A

Acquires lock

Spins until released

Lock
B

Acquires lock

Spins until released
We can break here

We wanna know which
function acquired it

Remember who
acquired it

void mtx_enter(struct mutex *mtx)
...
 for (;;) {
 if (mtx->mtx_wantipl != IPL_NONE)
 s = splraise(mtx->mtx_wantipl);
 if (try_lock(mtx)) {
 if (mtx->mtx_wantipl != IPL_NONE)
 mtx->mtx_oldipl = s;
 mtx->mtx_owner = curcpu();
 mtx->mtx_ra =
 __builtin_return_address(0);
 return;
 }
 if (mtx->mtx_wantipl != IPL_NONE)
 splx(s);
 if (++i > MTX_TIMEOUT)
 panic("mtx deadlocked ra:%p\n",
 mtx->mtx_ra);
 }

Interrupt blocks IPI
CPU A CPU B

Interrupt
Fault

IPI Blocked

Lock

Acquire lock

Wait until released

Wait ACK

TLB shootdown

Disable interrupt

Interrupt blocks IPI
CPU A CPU B

Interrupt
Fault

IPI

Lock

Acquire lock

Wait until released

Wait ACK

TLB shootdown

Disable interrupt

Interrupt blocks IPI
CPU A CPU B

Interrupt
Fault

IPI

Lock

Acquire lock

Wait until released

Wait ACK

TLB shootdown

Disable interrupt

Accept Interrupt

Re-enable interrupt

Interrupt blocks IPI
CPU A CPU B

Interrupt
Fault

IPI

Lock

Acquire lock

Wait until released

Wait ACK

TLB shootdown

Disable interrupt

Accept Interrupt

Re-enable interrupt

ACK for rendezvous

Interrupt blocks IPI
CPU A CPU B

Interrupt
Fault

IPI

Lock

Acquire lock

Wait until released

Wait ACK

TLB shootdown

Disable interrupt

Accept Interrupt

Re-enable interrupt

ACK for rendezvous

Solution: Enable IPI interrupt on
interrupt handlers

Fixing clock interrupt
handler

uint32_t clock_int5(uint32_t mask, struct trap_frame *tf)
...
 if (tf->ipl < IPL_CLOCK) {
#ifdef MULTIPROCESSOR
 u_int32_t sr;

 sr = getsr();
 ENABLEIPI();
 __mp_lock(&kernel_lock);
#endif
 while (ci->ci_pendingticks) {
 clk_count.ec_count++;
 hardclock(tf);
 ci->ci_pendingticks--;
 }
#ifdef MULTIPROCESSOR
 __mp_unlock(&kernel_lock);
 setsr(sr);
#endif

splhigh() blocks IPI
CPU A CPU B

splhigh()
Fault

IPI Blocked

Lock

Acquire lock

Wait until released

Wait ACK

TLB shootdown

splhigh() blocks IPI
CPU A CPU B

splhigh()
Fault

IPI

Lock

Acquire lock

Wait until released

Wait ACK

TLB shootdown

splhigh() blocks IPI
CPU A CPU B

splhigh()
Fault

IPI

Lock

Acquire lock

Wait until released

Wait ACK

TLB shootdown Accept Interrupt

splhigh() blocks IPI
CPU A CPU B

splhigh()
Fault

IPI

Lock

Acquire lock

Wait until released

Wait ACK

TLB shootdown

ACK for rendezvous

Accept Interrupt

splhigh() blocks IPI
CPU A CPU B

splhigh()
Fault

IPI

Lock

Acquire lock

Wait until released

Wait ACK

TLB shootdown

Solution: defined new interrupt priority
level named IPL_IPI to be higher than

IPL_HIGH

ACK for rendezvous

Accept Interrupt

Adding new interrupt
priority level

 #define IPL_TTY 4 /* terminal */
 #define IPL_VM 5 /* memory allocation */
 #define IPL_CLOCK 6 /* clock */
 #define IPL_HIGH 7 /* everything */
 #define NIPLS 8 /* Number of levels */

 #define IPL_TTY 4 /* terminal */
 #define IPL_VM 5 /* memory allocation */
 #define IPL_CLOCK 6 /* clock */
 #define IPL_HIGH 7 /* everything */
 #define IPL_IPI 8 /* ipi */
 #define NIPLS 9 /* Number of levels */

Dynamic memory allocation
without using virtual address
• To support N(>2) processors, the cpu_info structure and the

bootstrap kernel stack for secondary processors should be
allocated dynamically

• But we can’t use virtual address for them

• stack may used before TLB initialization, thus causing the
processor fault

• MIPS has Software TLB, need to maintain TLB by software
TLB miss handler is the code to handle it
This handler refers cpu_info, it cause TLB miss loop

• To avoid these problems, we implemented wrapper function to
allocate memory dynamically, then get the physical address and
return it

The wrapper function
vaddr_t smp_malloc(size_t size)
...
 if (size < PAGE_SIZE) {
 va = (vaddr_t)malloc(size, M_DEVBUF, M_NOWAIT);
 if (va == NULL)
 return NULL;
 error = pmap_extract(pmap_kernel(), va, &pa);
 if (error == FALSE)
 return NULL;
 } else {
 TAILQ_INIT(&mlist);
 error = uvm_pglistalloc(size, 0, -1L, 0, 0,
 &mlist, 1, UVM_PLA_NOWAIT);
 if (error)
 return NULL;
 m = TAILQ_FIRST(&mlist);
 pa = VM_PAGE_TO_PHYS(m);
 }

 return PHYS_TO_XKPHYS(pa, CCA_CACHED);

Reduce frequency of
TLB shootdown

• There’s a condition we can skip TLB shootdown in invalidate/
update:

• In user mode, if shootee processor doesn’t using the pagetable,
we won’t need shootdown; just changing ASID assign is enough

• In reference pmap implementation, a TLB shootdown
performed non-conditionally, even in case it isn’t really needed

• We added the condition to reduce frequency of it

using the pagetable not using

kernel mode need need

user mode need don’t need

void pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
...
 arg.pmap = pmap;
 arg.va = va;
 smp_rendezvous(0, pmap_invalidate_page_action, 0,
 (void *)&arg);

void pmap_invalidate_page_action(void *arg)
...
 pmap_t pmap = ((struct pmap_invalidate_page_arg *)arg)->pmap;
 vm_offset_t va = ((struct pmap_invalidate_page_arg *)arg)->va;
 if (is_kernel_pmap(pmap)) {
 pmap_TLB_invalidate_kernel(va);
 return;
 }
 if (pmap->pm_asid[PCPU_GET(cpuid)].gen
 != PCPU_GET(asid_generation))
 return;
 else if (!(pmap->pm_active & PCPU_GET(cpumask))) {
 pmap->pm_asid[PCPU_GET(cpuid)].gen = 0;
 return;
 }
 va = pmap_va_asid(pmap, (va & ~PGOFSET));
 mips_TBIS(va);

 CPU_INFO_FOREACH(cii, ci)
 if (cpuset_isset(&cpus_running, ci)) {
 unsigned int i = ci->ci_cpuid;
 unsigned int m = 1 << i;
 if (pmap->pm_asid[i].pma_asidgen !=
 pmap_asid_info[i].pma_asidgen)
 continue;
 else if (ci->ci_curpmap != pmap) {
 pmap->pm_asid[i].pma_asidgen = 0;
 continue;
 }
 cpumask |= m;
 }

 if (cpumask == 1 << cpuid) {
 u_long asid;

 asid = pmap->pm_asid[cpuid].pma_asid << VMTLB_PID_SHIFT;
 tlb_flush_addr(va | asid);
 } else if (cpumask) {
 struct pmap_invalidate_page_arg arg;
 arg.pmap = pmap;
 arg.va = va;

 smp_rendezvous_cpus(cpumask, pmap_invalidate_user_page_action,
 &arg);
 }

Future works

• Commit machine ddbcpu<#>

• New port for Cavium OCTEON,
if it’s acceptable for OpenBSD project

• Maybe SMP support for SGI Origin 350

• Also interested in MI part of SMP

