
Epitome2: dedup for the masses

Marco Peereboom
OpenBSD

Abstract

As the proliferation, reliance and importance of rich digital
formats have increased over the years, so have demands on
data storage capacity. However, backup technologies have
not kept up with this trend. The traditional timestamp based
Towers of Hanoi backup methodology cannot handle the
sheer volume of data and backup windows have been
significantly reduced due to the 24 hour online economy.
This methodology also backs up the same content
repeatedly, even if the content has not changed. This results
in a flood of data transfer that can overwhelm networks and
other critical resources. Over the same period of time disk
technology has progressed in leaps and bounds, both in
performance and more importantly, in reliability. In
comparison to disks, tape technologies are still
comparatively slow and the media tends to deteriorate over
time. Additionally, there are the future hardware
compatibility issues of trying to match a degraded tape to a
working tape drive, not to mention the physical issues such
as offline labeling and storage. To work around these issues
several new backup and archival paradigms have been
developed, however, these are mostly out of reach of the
open source community due to cost and licensing issues.

 1 Introduction

Epitome is a set of building blocks that enables the creation
of networked data backup solutions. It includes several
tools to create deduplicated backups – these tools also serve
as examples for application writers who wish to make use
of the Epitome API. Epitome leverages some ideas from
Plan 9’s Venti1 which was the original inspiration for the
project.

The goal of the project is multifaceted. It intends to provide
a viable alternative to tape backups using magnetic or flash
disk storage, whilst being versatile enough to enable more
sophisticated scenarios such as archival and Content
Addressable Storage (CAS). It also strives to provide an
interface that is both simple and “familiar”. That said, the
initial goal is to create the client/server components
required to replace tar with a tool which creates
deduplicated backups over the network using a low
bandwidth protocol.

This paper will refer to both backup and archives. Industry
uses both of these terms loosely, however they are distinctly
different. In order to prevent confusion this paper will use

the following definitions:

• Backup: A copy of primary data that can be used to
restore content and/or application state after a data-
loss event. This is typically a recurring activity
that serves as an insurance policy for business
continuity and/or private data sets.

• Archive: A collection of data retained for the long-
term that defines the record of a business,
application and information state. Archives are
typically kept for mining, auditing, regulatory and
compliance reasons rather than for data recovery.

Additionally, archives typically offer methods to associate
rich metadata with the archived content. This is done to
describe the content and enable future analysis. Some
conceivable scenarios are:

• discontinued application or data format
• historical records
• evidence in a lawsuit

The open source community has made significant progress
in technological innovation, however, in the realm of
backup and archival storage solutions it has not. Currently
such solutions are in the hands of vendors that sell
exorbitantly expensive, proprietary systems that do not
interoperate with open source software. These proprietary
solutions are inaccessible for open source developers and
are riddled with encumbering patents. The BSD community
has been especially underserved due to lack of vendor
interest. Epitome tries to fill this gap by providing the open
source community with an alternative backup and archival
solution that includes modern features such as:

• data deduplication and compression
• inherent data integrity
• flexible metadata handling

Modern file systems offer some backup and archival
features however they are inherently not intended for data-
at-rest. Despite implementing advanced and complex
features to increase reliability (i.e. CRCs, ECC and parity)
and to enable certain disaster recover scenarios (i.e.
snapshots and replication), they are not bullet proof. They
also do not have the capability to handle rich metadata that
is typically associated with an archival solution. Other
problems result from licenses and patents - the one truly
advanced file system available via open source is really
“pseudo open source” due to it being encumbered by

1

 API

 API

 Protocol

patents and being complex to port to other systems. It
serves its purpose and does what it does well; however it is
not useful as an open source backup or archival solution.

 Inherent to file system backups is a file transfer protocol.
The widely used ones, CIFS and NFS, are very chatty and
when used in a backup scenario, transfer entire files just like
a Towers of Hanoi backup strategy would.

In the past there have been some projects that have not
made it beyond the prototype stage, with one positive
exception being Plan 9’s Venti. However, for a number of
different reasons Venti has never really made it out of Plan
9 and is therefore not a viable open source solution either.
The Epitome suite tries to pick up where Venti left off
whilst providing several new solutions to previously
unresolved problems.

Great care was taken to make Epitome as open source
friendly as possible. The source code for Epitome is made
available under the ISC license and is therefore not
encumbered by license deception. All algorithms are simple
and based on prior art, thus eliminating patent issues.
Despite having complex code paths, the architectural and
conceptual ideas behind Epitome are simple enough to be
understood by anyone with a casual interest in backup and
archival solutions.

Epitome was developed using the OpenBSD2 development
methodology. This means that the code is only as complex
as it needs to be and no more. There are no hooks in the
code for future additions - code will be written as required,
not as anticipated. In order to be a good OpenBSD citizen
the code has to be easily portable and be architecture and
endian neutral.

The Epitome protocol is very lightweight and has only a
few primitives. The design heavily favors bandwidth
reduction over system resource usage. Each primitive
consists of 12 bytes and, if required, a payload that is
optionally compressed before it is sent over the wire. The
protocol has a SCSI-like feel and even reuses some
terminology. All network based communication is
encrypted using SSL.

This paper details the design and implementation of the
Epitome protocol and the associated applications which
make use of its API. It also demonstrates a prototype of a
viable backup and archival solution that makes use of
magnetic disks instead of traditional tapes. We also offer an
insight into the future plans for this project.

 2 Background

The Epitome13 suite was written as a proof-of-concept data
deduplication and compression engine. Whilst it proved to

be an interesting solution, its usefulness was limited due to
the lack of networking capabilities. Valuable lessons and
insights resulted from the development process and guided
the design of the Epitome2 suite.

The Epitome2 suite provides a client and server API which
implements the protocol and low-level networking
capabilities. In order to keep bandwidth usage to a
minimum the Epitome protocol requires participation from
both the client and server. The idea is that the client only
issues commands to the server when needed and utilizes
compression whenever possible.

The architectural overview of Epitome2 is as follows:

To keep the API uniform both the client and server code
exists inside the same library and make use of the same
functions. Depending on the context, functions may or may
not be available. The Epitome backend is part of the server-
side API and is extensible.

The Epitome suite assumes that the underlying storage
devices are reliable and preferably offer some sort of
periodic data integrity validation. For example it could be a
high-end RAID card providing such services.

When the backend does run into a corrupt chunk it could do
several things. For example, it could rename the chunk so
that a subsequent write of the same chunk would restore
integrity of the overall system. However, this is currently
not part of the design. The assumption is that hardware is
providing adequate data integrity.

 3 epitomed

2

backend

Client
Apps

Epitomed

Net

 API

 API

 Protocol

epitomed is the server-side workhorse of the Epitome suite
and is a daemon that listens for incoming network
connections. When a valid connection arrives a new process
is forked in order to handle the session. Session parameters
are negotiated between the client and server via a client
request – server response mechanism. Once this step is
complete the client can start issuing commands to the
server.

Without delving into the details of the protocol, a typical
archival session consists of a collection of commands that
may result in data being written to the Epitome backend.
As the header and payload are received by the server, the
payload is uncompressed, if required, and the digest is
calculated. Before attempting to write the payload to the
backend a check is performed to ensure that a copy of the
payload does not already exist. If the payload does not exist
it is written to the backend and the digest is returned over
the wire to the client. As per the protocol details given in
section 5, the client should not issue write requests without
first verifying that the digest does not already exist.

An archival retrieval begins by reading the data payload
from the backend. Depending on the server configuration
and the options specified within the request, the data chunk
may be verified and/or decompressed before being sent over
the wire. However, if the payload was saved uncompressed
it will always be sent uncompressed.

Currently Epitome only supports the zlib4 compression
algorithm. The reason for this choice was due to the
simplicity, robustness and speed of the algorithm. It is a
well established and robust library with a reasonably simple
interface and is light enough to use even on slower
hardware.

Currently epitomed implements a maildir-like backend.
Each chunk is written to a file which has a filename derived
from the digest of the uncompressed chunk data. Each
chunk has a simple header followed by the raw data which
can be optionally compressed. This header field is written
using External Data Representation (XDR5) to ensure that
the data is portable. The header contains the following
information:

• compressed size
• uncompressed size
• flags that indicate how the chunk was saved

A maildir-like backend is sub-optimal for a deduplication
archive. This is due to several factors including file system
block-size and inode starvation. However, it is very simple
to implement and has proven robust for mail applications.

The backend does not provide any services besides reading
and writing the header and data payload. The only
exception is when the backend is prepared for use; see

section 4.2.

The backend has a driver-like implementation and can
therefore be easily replaced by something that is much more
sophisticated. Only a handful of functions need to be
implemented. The functions that the backend must provide
are:

• Open
• Open the backend for use. Performs minimal

verification that the backend is ready to use.
This function is called when a valid session is
established.

• Close
• Close the backend. All outstanding I/O is

flushed and synchronized. This function is
called when a session is torn down.

• Read
• Read the header and data payload from the

backend for the specified digest.
• Write

• Write the header and data payload to the
backend for the specified digest.

• Exists
• Read the header from the backend for the

specified digest.
• Create

• Prepare the backend for first use. This is a
destructive operation and is not intended for
runtime use.

 3.1 Security Considerations

epitomed was designed with security in mind and currently
it supports two modes of operation. If run with an EUID of
0 the daemon will chroot and drop privileges. If desired the
daemon can be run with a non-privileged EUID which
allows the daemon to run in a non-chroot environment.

All network traffic to and from the daemon is encrypted
using SSL provided by Agglomerated SSL6 - an easy to use
wrapper for the standard OpenSSL7 library. All
communication requires valid certificates for the CA and
both the client and server.

What may come as a surprise is that data-at-rest is not
encrypted. This might sound counter intuitive, however, it is
done to allow for hash collisions on identical data, which in
turn enables the deduplication algorithm. Since the hashed
chunks are used by all clients one could argue that there is a
risk of guessing digests. However, with the SHA1
algorithm this is in the order of 2^160 per digest.
Enumerating such a large name space is unlikely to be
practical at the time of writing. In the future the Epitome
suite will allow for the use of other hashing algorithms or
much more sophisticated fingerprinting algorithms.

3

The file system based backend is only as secure as its
permissions. Therefore the epitomed server administrator
needs to ensure that the permissions of the target directory
are configured appropriately.

Another area that needs consideration is metadata. In the
current version the client is responsible for all metadata
handling. The server does not interpret the metadata and
therefore the client can safely encrypt it.
Metadata is not size checked by the server and can therefore
be arbitrarily big. This is an issue that will be resolved in
the future.

 3.2 Options

To remain true to the KISS development methodology the
epitomed server has only a few available options. Currently
they are:

• max_chunk_size
• This designates the maximum data payload

size. There is a balance between
compressibility and dedupibility; typically the
larger the payload the higher the
compressibility but lower dedupibility and
vice-versa.

• queue_depth
• This determines how many commands a

session can have outstanding. This value must
be negotiated with the client.

• allow_uncompressed_reads
• This allows the server to read data from the

backend and uncompress it before it is sent
over the wire.

• force_uncompressed_writes
• With this flag set the epitomed server will

write all data uncompressed on the backend.
This has a direct result on future reads since
those will send the data verbatim from the
backend to the client. Data payloads will not
be compressed on future reads.

• be_type
• This designates the type of the backend.

Currently only “file” is supported.
• be_name

• This has a different meaning depending on the
be_type. Since only file is supported at this
time this option specifies the target directory
for the backend. For example: /var/epitome.

These options are read out of a human readable
configuration file that uses the familiar option=value
format. This file is read once at launch. Even though the
settings of an epitomed server can change throughout the
life-cycle it is recommended to plan accordingly instead.

Note: the backend configuration cannot be changed once it
is setup.The configuration file can also be overridden using
environment variables.Currently the certificate location is
not specified in the configuration file and is a command line
option only.

 4 Applications

Currently the Epitome suite only ships with one tool,
epitomize. epitomize serves a dual purpose. First and
foremost it is an archiving tool intended for the end-user.
Secondly, it is an example of how to use the Epitome API.
Libepitome is where Most of the code for the entire suite
resides in libepitome. epitomize uses this library in order to
generate, transfer, validate and receive commands.

 4.1 epitomize

epitomize is a tar-like utility. It strives to reuse as many of
tar’s command line options as possible in order to provide a
familiar interface. The difference being that epitomize
interacts with the epitomed daemon which results in data
being deduped and archived instead of being stored in a
local file. The result of this operation is either an “archive
token” or a metadata file.

A metadata file contains all of the information needed to
reconstruct (a.k.a. rehydrate) the original archive. Once
again, this file is written using XDR to ensure portability
across different platforms. When using the archive token
method the resulting metadata is transferred to the epitomed
server. The metadata transfer is not limited by the
max_chunk_size setting.

Saving the metadata on the epitomed server has the benefit
that a whole archive can be reconstructed on the server-side,
however, if it falls into the wrong hands it can allow a
malicious person to reconstruct an archive. It also adds to
the bandwidth requirement since it travels back and forth
between the client and server. Since the epitomed server
does not delete anything that has been saved it will also lead
to increased storage.

It needs to be noted that if the metadata or the archive token
are lost then there is no way to reconstruct the original
archive.

 4.2 Options

The client shares some options with the server and has a
few of its own.

The shared options with epitomed are:
• max_chunk_size
• queue_depth

4

Additional options:
• allow_uncompressed_writes

• If allowed by the server send uncompressed
data payloads to the server.

 4.3 eprepare

eprepare is a sideband tool that has to be used prior to
epitomed deployment. Its only intent is to call the Create
function of the backend with appropriate parameters in
order to initialize the backend (i.e. create directories, setup a
database, etc). When using the file backend it creates all
directories in the target directory that are used in the
maildir-like interface.

It reuses the epitomed configuration file for backend
specific parameters. Although all options can be overridden
via the command line if required.

 5 Implementation

The implementation of the Epitome suite resides mostly in a
dynamically loaded library. The application writer needs to
provide callbacks to perform functions on behalf of the
library. The intent is to have libepitome be generic enough
so that alternative and third-party applications can be easily
developed.

The code is written in C using the Keep It Simple Stupid
(KISS) principle. All code is Finite State Machine (FSM)
based and every time the queues are evaluated each I/O is
pushed to the next state, if possible. This was done to
enable full asynchronicity in the code whilst eliminating the
need for concurrency. This decision was made in order to
avoid timing and other hard to debug issues. For all intents
and purposes Epitome is an I/O system and therefore
reliability is of the utmost concern. To keep latency as low
as possible, techniques such as zero-copy are used where
applicable.

The library has several dependencies and requires the
following libraries:

• zlib
• ASSL
• OpenSSL

Additionally the code uses the highly portable queue(3) and
tree(3) macros. All queues are implemented using TAILQ
and there are several Red Black trees used within the code.

The library also has some debugging features such as
memory debugging, memory painting and logging
capabilities.

The following diagrams outline the execute-to-wire I/O
progression through the queues. Dashed lines indicate
network traffic.

 5.1 Protocol

The Epitome protocol is what provides all of the nuts and
bolts for data transfer and bandwidth mitigation. All
commands that travel to the server will be returned to the
client with a success or failure indication and a payload, if
required. The header in both directions is identical and its
meaning is contextual based on the opcode. All headers
have a fixed size of 12 bytes and travel the network in
traditional network byte order.

Generic header:

Byte 0 Byte 1 Byte 2 Byte3

Version Opcode Status EX status

Tag Flags

Size

The version field indicates which Epitome protocol version
is being used. This is intended to prevent future interactions
between different protocol revisions which could have a
negative impact. Currently only protocol version 1 is
allowed and any other version will be rejected.

The opcode field designates the context of the header and

5

Socket

Write
Queue

Pending
Queue

Free
Queue

Run
Queue

Socket

Run
Queue

Write
Queue

Free
Queue

the payload. Depending on the value, individual fields,
flags and payload will have a different meaning. The
opcode is always an even number for client requests and an
odd number for server replies. Both the client and server
will reject and terminate the connection if they receive a
non-supported command; this includes commands that are
invalid in their respective context.

The status byte indicates success or failure. If it indicates
failure then the EX status field contains an extended error
code which narrows the failure down so that it can be used
to determine a recourse.

The tag field is a unique identifier for this command. The
client is not allowed to issue a duplicate tag to the server.
When a command arrives at the server the matching tag is
popped off the free-queue. This implies that the
client/server tag are always exactly the same.

The flags field qualifies opcode specific hints. See
individual primitives for an explanation.

The size field indicates the payload size, if required. This
size is used as a hint when streaming commands off the
wire into the run queue. Therefore a generic command and
completion looks conceptually like the following:

Header Payload

All commands are initiated by the client and have a
completion that is generated by the server based on the
result of the client command.

 5.2 Primitives

The following sections contain a detailed description of all
protocol primitives.

 5.2.1 NEG(2)

The NEG command requests a queue depth and
max_chunk_size. The server will try to honor the client
request but will override it if the client requested values

exceed the server settings.

The negotiation process is based on a client request, server
dictates mechanism, meaning that the client has to comply
with the server limitations. If the client issues commands
outside of the negotiated parameters the server will
terminate the connection.

Byte 0 Byte 1 Byte 2 Byte3

0x01 0x02 N/A N/A

Requested Queue Depth N/A

Requested max_chunk_size

 5.2.2 NEG_REPLY(3)

The NEG_REPLY is the server reply to a NEG command.
If possible it honors the client request, if not it returns the
overridden values. The client shall honor these values.

Byte 0 Byte 1 Byte 2 Byte3

0x01 0x03 N/A N/A

Negotiated Queue depth N/A

Negotiated max_chunk_size

 5.2.3 NOP(10)

The client sends a header plus a 4 byte payload containing a
32 bit unsigned integer. The server shall reply to this
command with the same NOP_IP + 1.

The NOP command is used under several scenarios.
Typical usage is “alive” or heartbeat monitoring. Other
uses include measuring round trip time latency, etc.

epitomize uses a NOP that is designated as the last
command of the session to ensure that all commands have
been sent and received by the server. It also carries the “last
command” designation in the API which then enables the
ordered tear down of a completed session.

Byte 0 Byte 1 Byte 2 Byte3

0x01 0x10 0x00 0x00

Tag 0x0000

0x00000004

NOP_ID

 5.2.4 NOP_REPLY(11)

The server replies to a NOP command with a

6

Socket

Command
Header + Payload

Completion
Header + Payload

NOP_REPLY. The NOP_REPLY returns the NOP_ID that
was provided in the NOP command with NOP_ID + 1. The
NOP_REPLY has a 4 byte payload that contains a 32 bit
unsigned integer.

Byte 0 Byte 1 Byte 2 Byte3

0x01 0x11 0x00 0x00

Tag 0x0000

0x00000004

NOP_ID + 1

 5.2.5 EXISTS(12)

The EXISTS command is used to determine if a digest
exists at the server. It has a 20 byte payload that contains
the digest that is being located.

If the flag is set to VERIFY_DIGEST and the digest exists,
the server will attempt to uncompress the associated chunk
and recalculate the digest value to ensure data integrity.

Byte 0 Byte 1 Byte 2 Byte3

0x01 0x12 0x00 0x00

Tag Depends

0x14

Digest[0x00 .. 0x13]

 5.2.6 EXISTS_REPLY(13)

The EXISTS_REPLY command returns the status of an
EXISTS command.

If the VERIFY_DIGEST flag was set then the digest is read
from the backend, uncompressed and verified against the
digest that was provided as the payload of the originating
EXISTS command.

1. If the verification succeeds then the server returns
OK (0x00) in the status field (byte 2), NONE
(0x00) in the extended status field and the flags
field will report if the chunk resides compressed on
the backend and/or if the chunk is designated as
metadata.

2. If the verification of the digest fails then the server
replies FAILED (0x01) in the status field (byte 2),
INVALID_DIGEST(0x03) in the extended status
field (byte 3) and the flag will be set to 0x0000.

3. If the digest does not exist the command returns
FAILED (0x01) in the status field (byte 2),
DOESNT_EXIST (0x02) in the extended status

field (byte 3) and the flags will be set to 0x0000.

If the VERIFY_DIGEST flag was not set then the backend
only determines if the digest exists or not:

1. If the digest exists the server returns OK (0x00) in
the status field (byte 2), NONE (0x00) in the
extended status field (byte 3) and the flags field
will report if the chunk resides compressed on the
backend and/or if the chunk is designated as
metadata.

2. If the digest does not exist the server returns
FAILED (0x01) in the status field (byte 2),
DOESNT_EXIST (0x02) in the extended status
field (byte 3) and the flags will be set to 0x0000.

The EXISTS_REPLY command never contains a payload.

Byte 0 Byte 1 Byte 2 Byte3

0x01 0x13 Depends Depends

Tag Depends

0x00000000

 5.2.7 READ(14)

The READ command is used to read a chunk from the
server. It has a 20 byte payload that contains the digest of
the desired chunk.

The flags field may have the COMPRESSED flag set in
order to request compressed data from the server. This is
used as a hint only and the server will determine how it
sends the data payload.

Byte 0 Byte 1 Byte 2 Byte3

0x01 0x14 0x00 0x00

Tag Depends

Digest[0x00 .. 0x13]

 5.2.8 READ_REPLY(15)

The READ_REPLY command returns the status and if
possible, the chunk data in the payload section.

If the VERIFY_DIGEST flag was set then the digest is read
from the backend, uncompressed and verified against the
digest that came as the payload of the originating READ
command.

1. If the verification succeeds then the server returns
OK (0x00) in the status field (byte 2), NONE
(0x00) in the extended status field and the flags

7

field will report if the chunk was sent
COMPRESSED (0x01) over the wire. The size
field will contain the size of the data payload.

2. If the verification of the digest fails then the server
replies FAILED (0x01) in the status field (byte 2),
INVALID_DIGEST (0x03) in the extended status
field (byte 3) and the flag will be set to 0x0000.
The size field is set to 0x00000000.

3. If the digest does not exist the command returns
FAILED (0x01) in the status field (byte 2),
DOESNT_EXIST (0x02) in the extended status
field (byte 3) and the flags will be set to 0x0000.
The size field is set to 0x00000000.

If allow_uncompressed_reads is set then the server will
attempt to uncompress the data from the backend and send
it uncompressed over the wire. If it is not set then the
server will return what is in the backend verbatim and set
the COMPRESSED (0x01) flag accordingly.

Note: if the max_chunk_size is unaligned then the client
might be unable to uncompress the payload since it only
allocates max_chunk_size + uncompress boundary bytes.

Byte 0 Byte 1 Byte 2 Byte3

0x01 0x15 Depends Depends

Tag Depends

On Failure 0x00000000 on Success N

Payload

 5.2.9 WRITE(16)

The WRITE command sends a data payload to the server.
The flags must indicate if the data was COMPRESSED
(0x0001) before being sent over the wire. The size field
shall be set to the payload size.

Note: a client application should always send an EXIST
command before sending a WRITE command in order to
minimize bandwidth usage. See the API section for more
information.

Byte 0 Byte 1 Byte 2 Byte3

0x01 0x16 0x00 0x00

Tag Depends

Payload Size

Payload

 5.2.10 WRITE_REPLY(17)

The WRITE_REPLY command returns the status of the
WRITE command. Upon arrival the data payload is
uncompressed, if necessary and the digest is calculated.
If the digest does not already exist then the data payload
will be saved to the backend.

1. If the digest already exists then the server returns
FAILED (0x01) in the status field (byte 2),
EXISTS (0x01) in the extended status field (byte
3) and the flags will be set to 0x0000.

2. If the digest does not exist then the server returns
OK (0x00) in the status field (byte 2), NONE
(0x00) in the extended status field and
COMPRESSED (0x0001) in the flags if the data
was saved compressed to the backend.

Depending on the force_uncompressed_writes setting it will
save the data payload to the backend either compressed or
uncompressed.

Byte 0 Byte 1 Byte 2 Byte3

Version 0x17 0x00 0x00

Tag Depends

0x14

Digest[0x00 .. 0x13]

 5.2.11 WRITE_MD(18)

The WRITE_MD command sends a metadata payload to
the server. The flags must indicate if the data was
COMPRESSED (0x0001) before being sent over the wire.
The size field shall be set to the payload size. The
WRITE_MD command is not bound by max_chunk_size.
The flags field must have the METADATA (0x0004)
designator. The client must send the uncompressed size as
a 4 byte unsigned integer in front of the metadata payload.

Byte 0 Byte 1 Byte 2 Byte3

Version 0x18 0x00 0x00

Tag Depends

Size metadata + 4

Uncompressed size

Metdata

 5.2.12 WRITE_MD_REPLY(19)

The WRITE_MD_REPLY command returns the status of

8

the WRITE_MD command. Upon arrival the metadata
payload is uncompressed, if necessary and the digest is
calculated. This digest is also known as the “backup
token”.

If the digest already exists then the command will result in a
failure.

1. If the digest already exists then the server returns
FAILED (0x01) in the status field (byte 2),
EXISTS (0x01) in the extended status field (byte
3) and the flags will be set to METADATA
(0x0004).

2. If the digest does not exist then the server returns
OK (0x00) in the status field (byte 2), NONE
(0x00) in the extended status and METADATA
(0x0004) in the flags field.

Byte 0 Byte 1 Byte 2 Byte3

Version 0x19 Depends Depends

Tag Depends

0x14

Digest[0x00 .. 0x13]

 5.2.13 READ_MD(20)

The READ_MD command is used to read a metadata
payload from the server. It has a 20 byte payload that
specifies the desired backup token.

The flags field may have the COMPRESSED flag set to
request compressed data from the server. This is used as a
hint only and the server will determine how it sends the
metadata payload.

Byte 0 Byte 1 Byte 2 Byte3

Version 0x20 0x00 0x00

Tag 0x0000

0x14

Digest[0x00 .. 0x13]

 5.2.14 READ_MD_REPLY(21)

The READ_MD_REPLY command returns the status and if
possible the metadata along with the uncompressed size in
the payload section.

If the VERIFY_DIGEST flag was set then the metadata is
read from the backend, uncompressed and verified against
the digest that was provided as the payload of the

originating READ_MD command:

1. If the verification succeeds then the server returns
OK (0x00) in the status field (byte 2), NONE
(0x00) in the extended status field and the flags
field will report if the chunk was COMPRESSED
(0x01) before being sent over the wire. The flags
will contain the METADATA (0x0004)
designator. The size field will contain the size of
the data payload.

2. If the verification of the digest fails then the server
replies FAILED (0x01) in the status field (byte 2),
INVALID_DIGEST (0x03) in the extended status
field (byte 3) and the flag will be set to
METADTA (0x0004). The size field is set to
0x00000000.

3. If the digest does not exist the command returns
FAILED (0x01) in the status field (byte 2),
DOESNT_EXIST (0x02) in the extended status
field (byte 3) and the flags will be set to
METADATA (0x0004). The size field is set to
0x00000000.

If allow_uncompressed_reads is set then the server will
attempt to uncompress the data from the backend and send
it uncompressed over the wire. If it is not set then the
server will return what is in the backend verbatim and set
the COMPRESSED (0x01) flag accordingly. The server
must send the uncompressed size as a 4 byte unsigned
integer in front of the metadata payload.

Byte 0 Byte 1 Byte 2 Byte3

Version 0x21 Depends Depends

Tag Depends

Size of metadata + 4

Uncompressed size

Metadata

 5.3 Typical Client/Server exchanges

Following are a few examples of client server exchanges
under different circumstances.

A fresh backup without metadata handling:

EXISTS -> EXISTS_REPLY
WRITE -> WRITE_REPLY
...
EXISTS -> EXISTS_REPLY

9

WRITE -> WRITE_REPLY
NOP -> NOP_REPLY

The NOP is used to drain the client side queues.

Same backup after the initial run:

EXISTS -> EXISTS_REPLY
...
EXISTS -> EXISTS_REPLY
NOP -> NOP_REPLY

Same backup after the initial run with metadata:

EXISTS -> EXISTS_REPLY
...
EXISTS -> EXISTS_REPLY
WRITE_MD -> WRITE_MD_REPLY
NOP -> NOP_REPLY

Restore operation:

READ -> READ_REPLY
...
READ -> READ_REPLY
NOP -> NOP_REPLY

Restore operation with metadata:

READ_MD -> READ_MD_REPLY
READ -> READ_REPLY
...
READ -> READ_REPLY
NOP -> NOP_REPLY

 6 Related Work

There is very little related work in the form of open source
projects. Besides Venti, only one known project appears to
have been sufficiently developed to be useful – lessfs8 is a
“high performance inline data deduplicating” file system
that has been developed for the Linux kernel.

All other projects appear to have either stalled or be in an
alpha/announce phase.

 7 Future Work

The Epitome2 suite is really just the beginning. It enables
the creation of many different applications and can be
readily extended. The plan is to evolve the protocol and
accompanying applications over time. The following
sections describe different ideas that are under consideration
for future work.

 7.1 Applications

The protocol is simple however it facilitates many diverse
applications. Some ideas that are under considerations are:

• Deduplicating File System
• The idea here is to create a backup file system

for client applications. For example, one
could envision simply copying all relevant
files onto such a file system on a daily basis
and let it store all changes.

• An extension to this would be the ability to
detect changed files and keep all versions of
these files in a read-only directory.

• CDP (Continuous Data Protection)
• This builds on the previous file system idea,

however, this would run on the client machine.
As files are opened and closed (with some
debouncing heuristics) they are backed up
continuously.

• VTL (Virtual Tape Library)
• This is an interesting idea that requires moving

some of the code into the kernel using some
form of virtual HBA (such as softraid9) which
in turn emulates a tape library. This would
enable deduplication for backup applications
that do not support it natively.

 7.2 Protocol

Several additions to the protocol are being considered such
as:

• DELETE
• If this primitive is added it will be a non-trivial

addition. There are many complexities with
reference counting that will need to be solved
before it can be implemented. Under certain
conditions (external metadata saving,
encrypted metadata, etc) this simply cannot be
done.

• CLOSE
• Currently the method to terminate a session is

to simply close the socket. This is adequate
for current applications but in the future an
application will likely need a specific
primitive.

• SEARCH
• The idea here is to allow the user to initiate a

metadata search from a client to the server
using something like Pinot10.

Currently the protocol only supports zlib compression and
SHA1 digests - this should be expanded to include more
efficient (and slower) compression algorithms and different
deduplication algorithms. The protocol is designed to run

10

inline and therefore not every algorithm will be adequate.
The infrastructure for this does not currently exist in the
code. Protocol wise it comes down to an expanded NEG
command in order to allow the client and server to agree on
what algorithms to use.

All data is written as sent from the client. This is adequate
in most scenarios however it may be necessary to encrypt
data-at-rest. Such a scenario will disable many other
features and will require modifications to the protocol as a
result.

A more radical idea is to use HTTP as the transport
mechanism for the current Epitome protocol. There are
several reasons why this is under consideration:

• It is well understood
• It can travel through proxies
• It is human readable
• It is becoming the transport of choice in the

archiving world

The primitives would need to be translated into generic
HTTP requests while some of them would need to become
commands that travel over HTTP. Despite the drawbacks
and complexities, the idea is attractive for the above
mentioned reasons.

 7.3 Backend

The current backend code is written with expansion in
mind. It has the look and feel of a driver and is therefore
relatively simple to expand. Some possibilities are:

• Cloud backend
• Clustering for horizontal scaling

• Segregation of backends for cloud applications

 7.4 Content Addressable Storage

Content Addressable Storage (CAS) is a separate beast
altogether, however, the primitives overlap significantly
with requirements that a CAS system would need. Bolting
on these additional pieces will be relatively easy.

The major use-case for CAS is “regulatory compliance” and
“retention”. The complexities of such a system are mostly
external to the protocol, for example the policy engine and
metadata generation. This would require the protocol to
provide a DELETE command along with several other
commands to manipulate metadata.

 8 Conclusion

Deduplication is very easy to prototype, however it is very
hard to move beyond that phase. The networked code was
prototyped three times before it performed at an adequate

level. Various approaches were tried and failed for
different reasons.

It is hoped that this paper and the accompanying code will
spur interest and move deduplication out of the vendor-only
realm. The library is easy portable to a myriad of different
operating systems and should be able to provide the
building blocks for other interesting projects. The planned
future work will add additional primitives, further
enhancing the protocol.

 9 Acknowledgments

I’d like to acknowledge several people in the OpenBSD
community that made this whole endeavor possible. Joel
Sing for his unending patience listening to me yack and
providing valuable ideas and insights. He also read through
the first drafts and translated them into actual English.
Jacek Masiulaniec for working on Epitome1 and making
epitomize a much more robust tool. Kenneth Westerback
for proof reading this paper. Theo de Raadt for his
supportive yelling and seemingly unending energy and
devotion to keep OpenBSD running allowing me to play in
the most intellectually stimulating open source community
in the world.

Jacob Yocom-Piatt, you know why mate.

I’d like to acknowledge Clarissa, my lovely wife, who puts
up with my open source addiction and even takes the time
to read and comment on technical papers such as this.

Finally, my lovely daughter Holland who always manages
to brighten my day.

11

References

[1] Venti http://doc.cat-v.org/plan_9/4th_edition/papers/venti/
[2] OpenBSD http://www.openbsd.org/
[3] Epitome1 http://www.peereboom.us/epitome/
[4] Zlib http://www.zlib.net/
[5] XDR http://www.ietf.org/rfc/rfc1832.txt
[6] ASSL http://www.peereboom.us/assl/html/assl.html
[7] OpenSSL http://www.openssl.org/
[8] lessfs http://www.lessfs.com/
[9] Softraid http://www.openbsd.org/cgi-bin/man.cgi?

query=softraid&apropos=0&sektion=0&manpath=OpenBSD+Current&arch=i386&format=html
[10]Pinot http://pinot.berlios.de/

