
OPENBSD
HARDWARE SENSORS FRAMEWORK

A unified and ready-to-use system for hassle-"ee hardware monitoring.

Constantine A. Murenin and Raouf Boutaba
University of Waterloo

AsiaBSDCon 2009 — 12–15 March 2009 — Tokyo, Japan

Abstract
In this paper, we will discuss the origin, history, design guidelines, API and the device drivers
of the hardware sensors framework available in OpenBSD.

The framework spans multiple utilities in the base system and the ports tree, is utilised by
over 70 drivers, and is considered to be a distinctive and ready-to-use feature that sets
OpenBSD apart from many other operating systems, and in its root is inseparable from the
OpenBSD experience.

1. Introduction
We will start by investigating into the matter of what
hardware monitoring sensors represent, how common
is it for them to appear in the general-purpose com-
puter hardware that has been available on the market
in the last decade or so, and what benefits can we gain
by having a unified, simple and straightforward inter-
face for getting the data out of these sensors.

Although it may come as a surprise to some users, the
majority of personal computers that have been avail-
able on the market in the last decade have an inte-
grated hardware monitoring circuitry whose main
intention is to deliver a plethora of functionalities
regarding temperature management and environ-
mental conditions. For example, many Super I/O
chips that can be found on popular motherboards
contain a logical device known as Microprocessor
System Hardware Monitor. [lm.4] [it.4] [viasio.4]
[nsclpcsio.4] [fins.4] [schsio.4] These hardware moni-
tors can be interfaced through I²C/SMBus or ISA/
LPC, or both, and provide information regarding the
rotational speed of cpu and system fans, temperature
readings from internal and external sensors, as well as
the voltage that is supplied to the motherboard by the
power supply unit. As a matter of fact, these hard-
ware monitors can also allow one to control the volt-
age that is given to the fans that are connected to the
motherboard, and have a closed-loop circuitry that,
once programmed, can vary the voltage, and thus the
speed, of certain fans based on the changes in sensory
data.

Another trend that has been particularly common in
the recent years is the availability of defined inter-
faces for software-based temperature readout from
individual components of personal computers, such as
the CPU, or the add-on cards, such as those imple-
menting the 802.11 wireless functionality or 10 Giga-
bit Ethernet. Popular examples include recent Intel
Xeon and Core series of processors (as well as budget
models that are marketed under different brands)
[admtemp.4] [cpu.4]; all AMD64 processors from
AMD (Families 0Fh, 10h, 11h) [kate.4] [km.4]; Intel
WiFi Link 4965/5100/5300 wireless network devices
[iwn.4].

When it comes to high-end server and workstation
equipment, then there are even more possibilities for
additional sensors, from Intelligent Platform Man-
agement Interface (IPMI) [ipmi.4] and Dell Embed-
ded Server Management [esm.4] to SCSI Accessed
Fault-Tolerant Enclosure [safte.4] and SCSI Enclosure
Services [ses.4]. [Gwynne.Open06]

Certain brand-name laptops feature additional oppor-
tunities for hardware monitoring, too. These can in-
clude IBM/Lenovo ThinkPad Active Protection Sys-
tem [aps.4] and Apple Sudden Motion Sensor
[asms.4], which provide information regarding accel-
eration in a 2- and 3-D plane, respectively. Newer
laptops with Advanced Configuration and Power In-
terface (ACPI) [acpi.4 et al] may additionally provide
information regarding the thermal zones [acpitz.4]
and battery status [acpibat.4], as well as a boolean

OpenBSD Hardware Sensors Framework 1

state of whether the power supply is currently con-
nected [acpiac.4].

Another variant of sensor data that has been found
necessary for system administrators to be aware of is
that of the status of logical disc drives from the utili-
sation of the Redundant Array of Inexpensive Discs
(RAID) technology. [esm.4] [ami.4] [ciss.4] [mfi.4]
[arc.4] [softraid.4] [cac.4] [mpi.4] This includes in-
formation regarding which logical drives may be af-
fected by what kinds of problems (e.g. a state of ‘on-
line’, ‘degraded’, ‘failed’ etc). [Gwynne.Open06]

The latest type of sensors that was introduced in
OpenBSD is the timedelta type, which provides data
regarding the offset of the local clock versus some
kind of a much more reliable timesource (e.g. a GPS
source or a low-frequency radio receiver). The
ntpd(8) daemon uses these timedelta sensors to cor-
rect the local clock, with the aim to ensure that they
are as close to zero as possible (i.e. the local clock
within the OS is as close as possible to that of some
external trusted time source). [Balmer.Asia07]
[Balmer.Euro07]

As a summary, it has been found that all of these
sensor-like data (see Table 1 for the complete list) can
be aggregated in a single and straightforward inter-
face, which we will be describing in the following sec-
tions. Needless to say, the monitoring of many of
these environmental sensors can predict and diagnose

Type Unit
Temperature K

Fan speed RPM

Voltage V DC, V AC

Resistance Ω

Power W

Current A

Power capacity W/h, A/h

Indicator boolean

Raw number integer

Percentage %

Illuminance lx

Logical disc drive enumeration

Local clock offset s

Table 1. List of sensor types.

system failure. [Gwynne.Open06] We will try to ar-
gue that OpenBSD’s interface is much easier to use
and is more effective than comparable interfaces in
other systems, since it requires no manual configura-
tion on the part of the user or system administrator
(unlike most competing solutions). [deRaadt.zdnet06]
Granted, due to the fact that no manual configuration
is required, and little user-visible options are available
for such configuration, the framework may not fit
everyone’s needs; however, when one has dozens of
distinct machines across the network, one starts ap-
preciating the fact that the framework is so easy to
use, and that, for the most part, it comes preconfig-
ured right from the time of the first boot of one’s
copy of OpenBSD.

1.1. Design decisions
Following the standard OpenBSD philosophy regard-
ing operating system features, the framework has
been designed with the goal of being simple, secure
and usable by default , r ight out-of-the-box.
[deRaadt.priv06] We should note that in many cases
overengineering would not have been useful anyhow,
since many devices have incomplete specifications,
and supporting too many extended features at the
price of a bloated kernel was judged as not being a
positive approach.

To illustrate this example of lacking or incomplete
documentation, let us consider how voltage sensors
work. When we read a value from popular hardware
monitoring chips (like those from Winbond or ITE
Tech), the sensed value represents a voltage in range
between 0 and around 2 or 4 V. I.e. some resistors
must be in place between a 12 V power line and the
sensor input on the chip. Subsequently, the read value
is scaled based on the resistor factors (see Table 2 for
the illustration), where the resistor recommendations
are expected to have been supplied by the chip manu-
facturer to the motherboard manufacturer, where the
latter must have adhered to such recommendations
when building their products.

Table 2. Voltage example for Winbond W83627HF.

Function Maths Result
original reading 0xcb 203

sensor voltage 203 * 16 mV 3,24 V

scale for +5 V 3,24 V * 1,68 5,44 V

scale for +12 V 3,24 V * 3,80 12,31 V

OpenBSD Hardware Sensors Framework 2

In practice, it has been noted that such recommenda-
tions may sometimes be missing or contradict each
other from much of Winbond documentation,
whereas at other times, the motherboard manufac-
turer might have decided to go with some microsav-
ing by not following certain parts of the recommen-
dation. In turn, all of this results in situations where
it is not at all clear what voltage sensor monitors
which power line and whether the readings can be
trusted; in a sense, voltage doesn’t scale, so to speak;
thus we have to do the best with what we have.
[Murenin.IEEE07]

2. Framework API
The API of the framework with relevant datastruc-
tures is defined in /sys/sys/sensors.h. The framework
was originally introduced in 2003 and first appeared
in OpenBSD 3.4, but was redesigned on several occa-
sions afterwards. As of this writing (March 2009), the
userland API has been stabilised in 2006 and has been
stable since OpenBSD 4.1, whereas the kernel API
and the overall ABI has suffered some minor changes
in 2007 with OpenBSD 4.2. We will now describe
th i s l a te s t re v i s ion o f the f rame work
[Murenin.IEEE07] in some detail; details on what
major changes were made in 2006 are available in an
article in The OpenBSD Journal [Murenin.TOJ06].

The sysctl mechanism is used as a transport layer be-
tween the kernel and the userland. [sysctl.3] [sysctl.8]
This has an advantage of making the interface rather
familiar to many end users, as well as programmers,
due to the wide familiarity with sysctl amongst BSD
users.

Two main datastructures are used: struct sensordev and
struct sensor. The former holds some information
about the sensor device as a whole (relevant MIB
element in the sysctl tree, the unix name of the de-
vice, the most number of sensors of each type and the
actual total number of sensors), whereas the latter
holds the information about each individual sensor.

Each sensor may include an optional 31-character de-
scription, an optional time when the value of the sen-
sor was last changed, the actual value of the sensor,
the type of the sensor, an ordinal sensor number
within sensors of this type on this device, an optional
sensor status and a field for some sensor flags.

struct sensordev {
 int num;
 char xname[16];
 int maxnumt[SENSOR_MAX_TYPES];
 int sensors_count;
};

Sensor description field should be used wisely: there
is absolutely no need to duplicate sensor type in sen-
sor description, nor is there any need to duplicate
numt in the description; thus descriptions like “Fan1”,
“Local Temperature 1”, “Local Temperature 2” should
be avoided if at all possible, and an empty string “”,
“Local” and “Local”, respectively, should be used in
their place.

Sensor state is optional,
and should only used by
those drivers that are
actually able to query
significant amount of
state information from
the hardware to have
the ability to meaning-
fully change the state from one to the next. The de-
fault state value is UNSPEC, which signifies that the
state information will never be updated, and thus can
be safely ignored by userland utilities such as sysctl(8)
and systat(1), in order to avoid providing the user with
meaningless information. For example, the majority
of the I²C and Super I/O hardware monitors should
not populate the state field, since they have not much
certainty in the validity of the readings they acquire.
On other hand, if the driver does know the state of its
sensors (for example, as is the case with IPMI), then
those states may be one of OK, WARN, CRIT or
UNKNOWN.

For the list of sensor types, please refer to Table 1, or
the source code.

Since OpenBSD 4.2, the sensor and sensordev datas-
tructures were renamed to ksensor and ksensordev in
the kernel, and some irrelevant bookkeeping fields
were removed from the userland sensor and sensordev
structures; for simplicity, in the next chapter we will
continue to refer to these structures from the user-
land perspective of sensor and sensordev, even if the
kernel structures are the ones we’re talking about.

2.1. Adding sensors in attach()
Writing drivers that utilise the framework is very
straightforward. In the attach procedure of the
driver, the first step that can be taken is initialisation

struct sensor {
 char desc[32];
 struct timeval tv;
 int64_t value;
 enum sensor_type type;
 enum sensor_status status;
 int numt;
 int flags;
};

enum sensor_status {
 SENSOR_S_UNSPEC,
 SENSOR_S_OK,
 SENSOR_S_WARN,
 SENSOR_S_CRIT,
 SENSOR_S_UNKNOWN
};

OpenBSD Hardware Sensors Framework 3

of the xname field of struct sensordev. Subsequently,
each member of the struct sensor array should have its
type field initialised (the only field that requires ex-
plicit initialisation), and sensor_attach() should be
called (which will set the numt field appropriately,
amongst some other bookkeeping).

Subsequently, sensor_task_register() can be used to reg-
ister the periodic update task.

The final thing that the driver must do to make its
whole tree of sensors available system-wide is call sen-
sordev_insta+(). The driver may abort anytime before
calling sensordev_insta+(), but once the call is made, a
sensordev_deinsta+() must be called before the driver
can safely detach itself, or cancel the attach procedure
due to some other error.

2.2. Sensor task refresh procedure
In the refresh procedure of a minimal driver, all that
needs to be done is the value field of each sensor to
be updated.

void
drv_attach(struct device *parent,
 struct device *self, void *aux)
{
 ...

 strlcpy(sc->sc_sensordev.xname,
 sc->sc_dev.dv_xname,
 sizeof(sc->sc_sensordev.xname));

 for (i = 0; i < n; i++) {
 sc->sc_sensors[i].type =
 SENSOR_TEMP;
 sensor_attach(&sc->sc_sensordev,
 &sc->sc_sensors[i]);
 }

 if (sensor_task_register(sc,
 drv_refresh, 5) == NULL) {
 printf(": unable to register "
 "update task\n");
 return;
 }

 sensordev_install(&sc->sc_sensordev);

 printf("\n");
}

void
drv_refresh(void *arg)
{
 struct drv_softc *sc = arg;
 struct ksensor *s = sc->sc_sensors;
 ...

 for (i = 0; i < n; i++)
 s[i].value = ...;
}

Of course, those drivers that keep state or use other
fields of the sensor structure must update them, too;
presumably, during each update cycle.

3. Sensor Tools
The sensors framework spans multiple user interfaces
in OpenBSD. These include sysctl(3) HW_SENSORS
for C/C++ programmes; sysctl(8) hw.sensors for in-
stantaneous readings or usage from shell scripts;
systat(1) sensors display for semi-realtime sensor
monitoring; sensorsd(8) for filling in the log files
with relevant changes in sensor data, as well as user-
configured alerts; ntpd(8), which, effectively, acts as a
timedelta minimiser; and snmpd(8), the SNMP
daemon. Some interesting tools are available in the
ports tree, too; these include sysutils/symon for re-
mote monitoring, and sysutils/gkrellm for some GUI
monitoring.

3.1. sysctl hw.sensors
The following is a sample output from running `sysctl
hw.sensors` on an AMD Phenom X4 9850 box, where
you can see the sensor trees from two drivers, km(4),
the embedded temperature sensor in the CPU, and
it(4), the Hardware Monitor from ITE Tech’s Super I/
O chip.

The first part of each line (before the equal sign, “=”)
represents the sysctl MIB for the sensor in question,
whereas the second part of each line represents the
decoding of the struct sensor datastructure by sysctl(8).
For details, see the relevant source code in src/sbin/
sysctl/.

3.2. sensorsd
The sensorsd(8) sensor monitoring daemon allows the
user to monitor all sensors and send alerts if certain
states of the sensors change. [deRaadt.zdnet06]

Since c2k7 (the general OpenBSD hackathon in 2007)
and OpenBSD 4.2, sensorsd can automatically moni-

hw.sensors.km0.temp0=50.50 degC
hw.sensors.it0.temp0=32.00 degC
hw.sensors.it0.temp1=45.00 degC
hw.sensors.it0.temp2=92.00 degC
hw.sensors.it0.fan0=2528 RPM
hw.sensors.it0.volt0=1.34 VDC (VCORE_A)
hw.sensors.it0.volt1=1.92 VDC (VCORE_B)
hw.sensors.it0.volt2=3.42 VDC (+3.3V)
hw.sensors.it0.volt3=5.21 VDC (+5V)
hw.sensors.it0.volt4=12.54 VDC (+12V)
hw.sensors.it0.volt5=1.62 VDC (-5V)
hw.sensors.it0.volt6=4.01 VDC (-12V)
hw.sensors.it0.volt7=5.75 VDC (+5VSB)
hw.sensors.it0.volt8=3.23 VDC (VBAT)

OpenBSD Hardware Sensors Framework 4

tor and report the changes in sensors states on those
sensors that keep their state (for example, as is the
case with IPMI, ESM and the drive and timedelta
type of sensors). [Biancuzzi.42] Moreover, for any
sensor, no matter whether its driver keeps its state or
not, the monitoring of manually specified upper and
lower boundaries can be performed. When any moni-
tored sensor state changes, the change is logged with
syslog(3) and a command, if specified, is executed. For
more details, see the source code and documentation
of src/usr.sbin/sensorsd/.

4. Sensor Drivers
In this section, we will try to provide an overview of
the kernel device drivers that utilise the framework.
For the most part, the statistics in this section are
based on the source code, as opposed to the binaries
of the actual kernels for i386/amd64/macppc/sparc64
etc. However, rest assured that majority of the driv-
ers are actually enabled in most GENERIC kernels in
OpenBSD, thus we deem that such a comparison is
still reasonable.

In general, the drivers can be divided into the fol-
lowing categories: Super I/O hardware monitors,
SMBus sensors, embedded temperature sensors, SCSI
enclosures and IPMI, ACPI sensors, as well as RAID
logical drive status sensors and time offset sensors.
The I²C drivers, by far, form the majority, as can be
evidenced from Chart I. Note that in this chart we
had to put some drivers into the general miscellane-

misc
17

acpi
4drive

8

timedelta
7

Super I/O
7

i²c
29

Chart I. Number of sensor device drivers in OpenBSD 4.5
by primary category.

ous category for simplicity, which include IPMI and
various other embedded sensors.

OpenBSD 4.5 contains 72 drivers that expose sensors
using the sensors framework. Chart II represents
sensor type popularity based on the number of drivers
that are using each type (nonexclusively). We note
that temperature sensor type is by far the most popu-
lar (used by 49 out of the 72 drivers), with the fan and
voltage sensors having a draw for the next most popu-
lar type (each is used by 25 out of the 72 drivers).

5. I²C Sensors and Bus Scan
In this section, we will describe how OpenBSD goes
about detecting various sensors on the I²C bus.

For a general-purpose operating system, the I²C bus
poses a significant problem as it doesn’t have a stan-
dard method of detecting what devices appear at
which addresses. Most devices on the I²C bus have at
most 256 registers from which information can be
read, or to which some data can be written, and vari-
ous manufacturers use different registers to place
their identification information regarding their chips.
Moreover, in many cases this identification informa-
tion could very easily be rather limited and not terri-
bly unique, making conflicts of all kinds possible. In
addition, the bus is rather slow, and accessing the
same registers multiple times may take a significant
amount of time if all the drivers would individually
probe the chips at all possible addresses and would be
enabled at the same time.

temp
fan

volt
acvolt

resistance
power

current
watthour
amphour
indicator

raw
percent

illuminance
drive

timedelta 7
8

1
6

8
8

1
1
2

25
25

49

Chart II. Sensor type popularity in OpenBSD 4.5 based on
the number of drivers using each type.

OpenBSD Hardware Sensors Framework 5

5.1. Open Firmware and I²C
However, the problem with a lacking discovery
mechanism is alleviated on the Open Firmware archi-
tectures — macppc and sparc64 in OpenBSD —
where the operating system can query Open Firm-
ware properties such that it then knows exactly which
chips are to be found at which I²C addresses on
which I²C bus. In turn, the match() procedure of each
individual sensor driver then does no probing other
than a simple comparison of ASCII strings — the
string with the name of the chip as supplied by the
bus to the strings that the driver supports. For exam-
ple, on macppc such a string could be “adt7467”
[adt.4] or “ds1775” [lmtemp.4].

5.2. I²C bus scan through i2c_scan.c
Those architectures that do not have Open Firmware,
but still support I²C (i386, amd64, alpha, armish,
socppc), have a scanning mechanism that is imple-
mented in /sys/dev/i2c/i2c_scan.c. The idea is to be
able to enable as many I²C sensor drivers as possible
without any adverse effects on the stability and reli-
ability of the boot process. This is accomplished in
several ways.

The scanning algorithms run through all I²C ad-
dresses that are known to contain certain interesting
sensors, and a different scanning function is used for
those addresses containing EEPROM chips (like
those implementing Serial Presence Detect (SPD)
functionality that provides information about the
memory modules [spdmem.4]). During much of the
scanning procedure, the value from each register is
ever read from each I²C address at most once (being
cached for subsequent reads during the scanning pro-
cedure). Certain registers at certain addresses, how-
ever, are banned from ever being read from the hard-
ware during the scanning procedure, if it is known
that accessing such registers could cause unintended
results. For example, the logic never tries reading the
0xfc register from chips that may resemble Maxim
1617 in some way, as reading such register may cause
some problematic behaviour on some hardware.

The result of a successful i2c_scan.c iteration over
each individual I²C address is a string describing the
chip, similarly to the one provided by the Open
Firmware on the Open Firmware architectures. An
example of such a string could be “w83793g” [wbng.4].
Since the I²C slave interface between the Open
Firmware-based I²C discovery and i2c_scan.c-based
discovery is the same, the same sensor drivers can be
used across all architectures without any losses of the
more trustable information regarding identification
of the chips that the Open Firmware architectures

provide.

Misidentification or even improper probing of the
chips can be fatal — it is well known that some ver-
sions of the lm_sensors package from the Linux land
have “bricked” many ThinkPads due to improper
probing of the I²C bus, where the contents of some
EEPROM chip would be wiped out during the
lm_sensors prob ing procedure .
[lm_sensors.ThinkPad] It is noteworthy to mention
that the real cause with such “bricking” is believed to
be the chips that didn’t fully adhered to the I²C stan-
dard; however, it’s hardly a good excuse if one’s laptop
is dead after running some part of the lm_sensors
package on GNU/Linux. Therefore, on OpenBSD a
great care has been taken to avoid any such incidents
at its root; and with the probing procedure being en-
abled by default in all GENERIC kernels on all archi-
tectures that require it, there is a sufficient proof that
such care has been very adequate.

In a nutshell, all I²C sensor drivers in OpenBSD
match exclusively based on strings provided by either
Open Firmware or i2c_scan.c, and both of the scan-
ning mechanisms are enabled by default on those ar-
chitectures that support it, meaning that in the vast
majority of times there is absolutely no need for the
end-user to do any kind of juggling to find about
which chips are located at which addresses and are
supported by which drivers (an unfortunate approach
that is taken by NetBSD, for example). To rephrase,
all supported I²C sensor drivers are enabled in the
GENERIC kernels on OpenBSD and work out of the
box on all supported architectures.

5.3. I²C register dumps
As explained earlier, the i2c_scan.c mechanism is run
automatically (during the kernel boot time) on all ar-
chitectures that it supports. When it encounters a
chip with an unknown signature, or with a known
signature, but that is still unclaimed by any driver,
then it dumps the whole register set of the chip into
the “dmesg”, the system message buffer [dmesg.8].
(In order to avoid redundant data in the dmesg, the
most often occurring register value is reduced from
the dump before it is printed into the dmesg.)

It is a standard and longtime practice in OpenBSD to
ask users to voluntarily send in their dmesgs to
dmesg@openbsd.org archive, which is a private ar-
chive accessible only by OpenBSD developers.
[deRaadt.misc98] This practice ensures that
OpenBSD developers will always have confirmations
that OpenBSD continues running on various hard-

OpenBSD Hardware Sensors Framework 6

ware that the users posses. Because all necessary in-
formation regarding unsupported I²C sensor chips is
already conveniently located in the dmesg by default,
it makes it very easy for the user to cooperate and
provide such information to the developers by simply
sending the dmesg (and, preferably, the output of
`sysctl hw.sensors`, too) to dmesg@openbsd.org. This
allows OpenBSD developers to ensure that both old
and new hardware is always properly supported, and
perform quality assurance regarding the stability of
such support and variations of the hardware.

5.4. I²C sandboxing for driver development
It is relatively easy to implement a sandbox environ-
ment in which new I²C drivers could be tested against
the I²C register dumps from dmesgs. The reason for
this is that many hardware sensor device drivers only
do reads from these registers, in other words, they
usually do not do any writes. (Lack of unconditional
writes is usually done on purpose, since on general
purpose hardware there is no definite certainty that
the driver is actually talking to a sensor chip, as op-
posed to some EEPROM device, so we want to make
sure that we don’t write anything to its registers un-
less absolutely necessary. [deRaadt.priv06]) There-
fore, if we have a full selection of register values, we
can then simulate the I²C bus in the userland and test
much of the functionality of the driver without even
booting a new kernel or having the required hardware
available at our disposal. [Murenin.TOJ07.wbng]

To do such simulation, we have to implement several
small functions and copy some other functions from
the kernel. First, we have to parse the register values
from the dump and fill in a 256-array of uint8_t type.
Then we allocate a so.c of the size as defined by the
struct cfattach of the driver we’re trying to sandbox
(e.g. wbng_ca.ca_devsize). Next, we define a local
struct i2c_attach_args datastructure, allocate its ia_tag
field of size sizeof(struct i2c_contro+er), and set ia_tag’s
ic_acquire_bus and ic_release_bus fields to some dummy
functions that don’t do anything other than returning
a 0 and nothing respectively. Implementation of the
iic_exec() emulation is equally straightforward, where
the read operation is based on the contents of our
pre-populated unit8_t array of 256 elements, whereas
the write operation returns a permanent error.

The next step is ensuring that the kern_sensors.c is
adapted to the userland. For this, we have to adjust
several of its functions. Apart from removing splhigh()
and splx() calls and some extra #includes, we have to
reimplement the sensor_task_register() routine. All we
need it to do is call the refresh function of the driver
once, and do nothing more. We would also like to be

able to see the sensor readings as updated by the
sandboxed driver, and for this, a print_sensor() function
can be copied from the userland sysctl(8) utility,
changing the type of its only parameter from struct
sensor to struct ksensor.

After all of this preparatory work is done, all we have
to do is call the ca_attach function of the struct cfattach
datastructure with the preallocated so.c and struct
i2c_attach_args (e.g. do a wbng_ca.ca_attach(NULL,
so.c, &ia) call), and go through the linked list of all
sensors on the relevant sensor device to print the
readings with print_sensor(). All files must be compiled
with “-D_KERNEL -I/usr/src/sys/”.

In the described procedure, the file of any I²C sensor
driver that meets the criteria of not doing any uncon-
ditional writes to any registers can be taken directly
from the kernel to our sandbox environment without
requiring any modifications of the driver’s code. All
that needs to be modified is the reference to the ap-
propriate struct cfattach variable in our sandbox
(wbng_ca in our example).

Having such a sandbox environment streamlines I²C
driver development and initial testing. The wbng(4)
and andl(4) represent the two drivers that have been
developed in the said sandbox and first tested against
several I²C dumps from the dmesg@openbsd.org ar-
chive. [Murenin.TOJ07.wbng]

6. Evolution of the Framework
The first revision of OpenBSD’s sysctl-based hard-
ware sensors framework has originally been brought
to OpenBSD in 2003 by Alexander Yurchenko (grange)
to accommodate some hardware monitoring drivers
that he was porting from NetBSD. [grange.priv05] In
this section, we will try to describe how the frame-
work has evolved and what were the major milestones
in the development.

6.1. Framework timeline
During 1999/2000, envsys(4) and sysmon(4) interfaces
have been introduced in NetBSD, along with the
lm(4) and viaenv(4) hardware monitoring sensor driv-
ers. A utility called envstat(8) is used to query /dev/
sysmon for various sensor readings. From 2000 until
2007, the documentation of NetBSD’s envsys(4) in-
terface has been suggesting that the entire API
should be replaced by a sysctl(8) interface, should one
be developed. (This comment has since been re-
moved with the introduction of the envsys 2 API on
2007-07-01.)

OpenBSD Hardware Sensors Framework 7

On 2003-04-25, the lm(4) and viaenv(4) drivers have
been ported from NetBSD and committed to
OpenBSD by Alexander Yurchenko (grange); however,
instead of porting the envsys(4) API from NetBSD, a
much simpler and more straightforward API has been
devised and developed based on the sysctl interfacing.
The sysctl addressing has been made very simple —
any sensor from any sensor device would have a global
ordinal number, and would be accessible by `sysctl
hw.sensors.N`, where N would be such global ordinal
number.

During some periods of 2004 and 2005, various gen-
eral and shared parts of the framework have been im-
proved in several ways by many people, mostly Alex-
ander Yurchenko (grange), David Gwynne (dlg), Mark
Kettenis (kettenis) and Theo de Raadt (deraadt). For
example, David Gwynne has introduced optional sen-
sors states before OpenBSD 3.8, and then the sen-
sor_task_register() routine before OpenBSD 3.9.
[Gwynne.Open06] Theo de Raadt has implemented
a large part of the i2c_scan.c logic and a big deal of
related I²C drivers during December 2005 and Janu-
ary 2006 before OpenBSD 3.9. [deRaadt.zdnet06]
Various other individuals have made great contribu-
tions on the driver front; for a full list of their names,
please see the related OpenBSD sourcecode and CVS
revision history.

On 2006-12-23, Theo de Raadt has committed the
patches provided by Constantine A. Murenin that
converted the 44 device drivers (i.e. all the drivers
that were using the sensors framework at that time)
and multiple userland applications from the simplistic
one-level “hw.sensors.<N>” style of addressing to the
more e vo lved and f l ex ib le two - l e ve l
“hw.sensors.<xname>.<type><numt>” style of address-
ing (e.g. hw.sensors.11 became hw.sensors.lm0.temp2 after
the change). The new style of addressing brought up
several benefits, from unbloating the kernel by remov-
ing certain redundant information from the drivers
(like the “Temp1” strings in sensor description which
used to be required for some identification purposes)
to making it easier to use the sensors API in both
shell scripts and C/C++ programmes (since the ad-
dressing became more stable and predictable across
heterogeneous machines) . [Murenin.IEEE07]
[Murenin.TOJ06] The userland API of the frame-
work has been stable since this patch and OpenBSD
4.1.

In 2007, two final changes have been made to the ABI
of the framework and the kernel sensor_task_register(9)
API. The first change by Theo de Raadt separated
the datastructures used by the kernel and the user-
land, so that certain internal information used for

bookkeeping (i.e. the linked lists) would not be re-
leased into the userland. The second change was
made by David Gwynne regarding the sensor_task API.

Outside of the OpenBSD realm, a project for porting
the framework to FreeBSD has been suggested, pro-
posed, approved and funded for Google Summer of
Code 2007. The project has been successfully com-
pleted and the final patch has been released on 2007-
09-13. The results of the work have been committed
into both DragonFly BSD and FreeBSD shortly
thereafter. [Murenin.GSoC07.sum] For more details,
please refer to a separate section in this paper.

6.2. Evolution of drivers
The sensors framework has originally been intro-
duced with OpenBSD 3.4 (2003) and only had 3 driv-
ers that were using the functionality provided by the
framework — lm(4), it(4) and viaenv(4). Chart III
represents how the number of drivers that expose
sensors to the framework has been growing over the
years since the original introduction of the frame-
work, where the upcoming OpenBSD 4.5 (2009) will
have 72 drivers using the framework. One can notice
a significant spike in the number of drivers around
OpenBSD 3.9, where the i2c_scan.c functionality was
developed and 19,5 new I²C sensor device drivers have
been introduced (the 0,5 refers to the lm(4) attach-
ment at iic(4)) [deRaadt.zdnet06].

The counts regarding the number of drivers using the
framework have been generated by counting the
number of files that do a sensordev_insta+() call, a call
that links the individual sensor tree of each invoca-

3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5

72
68

61

51
46

42

33

9
5543

Chart III. Number of drivers using the sensors "amework
"om OpenBSD 3.4 to 4.5.

OpenBSD Hardware Sensors Framework 8

tion of the driver with the global sysctl tree. For
OpenBSD versions prior to 4.1 (i.e. OpenBSD 3.9 and
4.0), the number of files with the sensor_add() call was

counted; for OpenBSD versions prior to 3.9 (i.e.
OpenBSD 3.5 to 3.8), the number of files with the
SENSOR_ADD() macro invocation was counted; for
OpenBSD versions prior to 3.5 (i.e. OpenBSD 3.4),
the number of driver files with the reference to the
sensors_head variable was counted.

7. Related Frameworks
OpenBSD’s hardware sensors framework compares
very favourably with the competition in the areas of
simplicity, hardware support and easy of use right out
of the box.

As a recent example of unique hardware support,
OpenBSD 4.4 (November 2008) was the first release
of any operating system to support the integrated
temperature sensors in AMD Family 10h processors
(right out of the box, of course). [km.4] Another
noteworthy leadership of OpenBSD 4.4 is in the sup-
port of the JEDEC JC-42.4 SO-DIMM temperature
sensors, which are still unsupported by competing
products to this day. [deRaadt.jedec08] [sdtemp.4]
[Biancuzzi.44]

7.1. NetBSD envsys / sysmon
In general, many NetBSD and OpenBSD drivers have
been cross-ported as far as the sensors framework is
concerned. The NetBSD API is more complicated
than the one in OpenBSD, which was specifically true
before some simplification was brought with
NetBSD’s envsys 2 on 2007-07-01.

On NetBSD, the majority of sensor drivers are dis-
abled by default. There is also no automated I²C
scanning procedure (the user is expected to know ex-
actly which sensor devices they have at which ad-
dresses before the drivers can be enabled). Many I²C

OpenBSD Exposing sensors

3.4

3.5 to 3.8

3.9 and 4.0

4.1 and up

extern struct sensors_head sensors;
SLIST_INSERT_HEAD(&sensors,);

SENSOR_ADD();

sensor_add();

sensordev_install();

Table III. Evolution of the sensor API
"om OpenBSD 3.4 to 4.5.

drivers that are present in OpenBSD are totally
missing from NetBSD.

The total number of drivers in the latest development
version of NetBSD as of February 2009, calculated by
the number of calls to the sysmon_envsys_register()
function, is only 32, versus 72 as the respective count
in the latest version of OpenBSD. Much of the dif-
ference in the number of drivers is due to the stag-
nated I²C scene on NetBSD, which only has 5,5 I²C
sensor drivers, whereas OpenBSD has 29,5 I²C sensor
drivers (the 0,5 refers to the lm(4) driver, which can be
attached on both isa(4) and iic(4) busses).

In 2007, a new version of the envsys framework was
introduced, called envsys 2, which has later been ad-
justed the same year. NetBSD’s sysmon_envsys_sen-
sor_attach() API introduced in 2007-11 appears to be
paying a tribute to the OpenBSD’s sensor_attach() API
that has been available in OpenBSD for about a year
prior. Prior to envsys 2 introduction in July 2007,
NetBSD’s API didn’t support detachable sensors. On
OpenBSD, detachable sensors have been supported
since January 2006.

Sensor types are roughly the same between NetBSD
and OpenBSD. Sensors of drive type f rom
OpenBSD’s b io (4) -ba sed de v ice dr i ver s
[Gwynne.Open06] were committed to NetBSD on
2007-05-01. No timedelta sensors have been ported to
NetBSD as of February 2009.

7.2. lm_sensors
The lm_sensors package in GNU/Linux requires sig-
nificant amount of configuration by the end-user, and
is much more difficult to get right compared to the
OpenBSD’s sysctl hardware sensors framework, which
works right out of the box. [deRaadt.zdnet06]

However, lm_sensors does provide additional func-
tionality that is still missing from OpenBSD, namely,
the ability to do extensive configuration and customi-
sation of certain chips as well as the monitoring envi-
ronment. Interfacing with some fan-controlling func-
tionality is provided in some drivers, as well as the
ability to modify fan divisor bits [Murenin.IEEE07].
That is, if the user has the patience and time to figure
it all out.

8. Port to FreeBSD / DragonFly BSD
Outside of the OpenBSD realm, a project for porting
the framework to FreeBSD has been suggested on the
FreeBSD’s mailing lists [Theile.arch07] and then
added to the official “ideas” page [FreeBSD.ideas] in
early 2007. Based on the suggestion, an application

OpenBSD Hardware Sensors Framework 9

was submitted by Constantine A. Murenin for Google
Summer of Code 2007 funding to port over the
framework to FreeBSD. The application was submit-
ted in the last day that Google was accepting applica-
tions for GSoC2007, since the suggestion was found
by chance ; nonethe les s , the proposa l
[Murenin.GSoC07.prop] has been voted up by the
FreeBSD committers to be approved for a funding
slot, and was subsequently selected and funded by
Google.

8.1. Summer of Code 2007
During Google Summer of Code 2007, all relevant
parts of the framework that were promised to be
ported from OpenBSD to FreeBSD have been ported
successfully. This included the sensors API and all
relevant documentation, and appropriate parts of the
userland applications sysctl(8) and systat(1). (The sen-
sorsd(8) sensor monitoring daemon didn’t require any
modifications to its C code for it to be ported, since
the userland API was made compatible between
OpenBSD and the FreeBSD port; however, some glue
integration code was, of course, developed and sub-
mitted in the final patch.) In addition to the base
components of the sensors framework itself, two sen-
sor drivers have been ported that support the hard-
ware monitoring modules of the most popular Super
I/O solutions: lm(4), supporting many Winbond
chips, and it(4), supporting many ITE Tech chips.
Moreover, FreeBSD’s coretemp(4) driver has been
conver ted to use the ne w f rame work , too .
[Murenin.FQSR07]

Google funding also allowed Constantine to fix sev-
eral not very related bugs in both FreeBSD and
OpenBSD, which included a 10-year-old pointer-
ar i thmet ic bug in OpenBSD’s make / job .c
[Murenin.makej07] [Murenin.TOJ07.make] and a 12-
year-old permission validation bug in FreeBSD’s
sys/kern/kern_sysctl.c [Murenin.sysctl07].

Summer of code experience was specifically pleasant
thanks to Shteryana Shopova (syrinx), Alexander Leid-
inger (netchild) , Rui Paulo (rpaulo) , Robert Watson
(rwatson), Sam Leffler (sam) and many other users and
developers who have provided useful suggestions and
feedback, and were a pleasure to work with.

On 2007-09-13, a complete final patch that combined
all the little parts of the framework has been publicly
announced and released, together with a bullet list of
all the items that were included in the said patch.
[Murenin.GSoC07.fin] However, the FreeBSD
HEAD tree was still frozen during that time due to
the upcoming RELENG_7 branching.

8.2. Sensors framework in DragonFly
On 2007-09-25, Hasso Tepper posted a message to
DragonFly’s submit@ mailing list [Tepper.submit07],
and contacted Constantine with a thank-you note
regarding the port, mentioning that with small adap-
tations the work will be soon committed into Drag-
onFly BSD [Tepper.priv07]; this took Constantine
somewhat by surprise, as he was himself contemplat-
ing doing the said port.

On 2007-10-02, the framework and the three ported
drivers have been committed into DragonFly BSD
1.11 [Murenin.GSoC07.sum], and so far have been part
of multiple DragonFly BSD releases.

8.3. Sensors framework in FreeBSD CVS
Shortly after the DragonFly BSD commit, the
patchset with the framework was approved by
re@FreeBSD.org (FreeBSD’s Release Engineering
team) to be committed into CVS HEAD once the
RELENG_7 branching is done and the freeze is over.

On 2007-10-14 (the same week when the branching
was done and the freeze was lifted), the framework
has been committed into FreeBSD 8.0-CURRENT
by Alexander Leidinger. The commit has generated a
lot of attention in the FreeBSD community, as some
people were very happy to finally be able to use the
framework right out of the tree, yet others were un-
happy with certain architectural decisions that were
much more appropriate to the OpenBSD architecture
and philosophy than to the one of FreeBSD.

On the same day as the commit was made, Poul-
Henning Kamp voiced his objections to the architec-
ture of the framework, for the framework having too
much OpenBSD feel into it. A very heated discussion
arose, where many people tried voicing their opinion
about whether the framework should or should not
stay in FreeBSD (see FreeBSD archives of the cvs-src@
and arch@ mailing lists around the time for complete
discussion threads). Poul-Henning has requested for
the framework to be backed out; it was then backed
out a day later.

Technically, a separate sensors framework is less
needed in FreeBSD as opposed to OpenBSD, since
FreeBSD has “sysctl internal magic” since 1995 that
dynamically manages every node in the sysctl tree. In
OpenBSD, on the other hand, the majority of the
nodes in the sysctl tree are still statically defined at
compile time, using preprocessor defines for MIB
integers and arrays of strings for textual representa-
tion of such MIB elements. In NetBSD, the sysctl
auto-discovery and dynamic registration of nodes

OpenBSD Hardware Sensors Framework 10

were introduced only in December 2003, whereas the
envsys framework has been available for several years
prior. In general, however, the sensors framework
provides more restricted namespace for devices to
export sensor-like data, whereas nodes in the sysctl
tree are often rather arbitrary. [phk.arch07] This is
precisely the reason why a separate sensor framework
is valuable nonetheless, since it allows one to have
many sensor-like values from different components
under a single and predictable tree.

It is important to note, however, that the summer of
code project was in fact done to PHK’s satisfaction;
he was unsatisfied merely with the fact that the
framework didn’t solve the niche in the FreeBSD-way.
[phk.gsocgood07] Poul-Henning Kamp emphasised
that he doesn’t want the framework to be available in
FreeBSD such that the space is left clear, and some-
one might design a framework more suitable for
FreeBSD in the long term. However, since the
framework in question was based on a framework
that has been available in NetBSD since as early as
1999, and FreeBSD is still missing any such frame-
work, it remains unclear if such a framework will ever
be developed for FreeBSD. [Murenin.Login08]

9. Conclusion
In this paper, we have described OpenBSD’s sysctl
hardware sensors framework and its accompanying
feature set. We have surveyed the origin of the
framework and the history of its development and
evolution, and provided an overview of the drivers
that are utilising the API.

We have shown that the framework is very relevant
and pervasive in OpenBSD, has been ported and
committed into FreeBSD and DragonFly BSD, and
remains popular and in high demand.

Certain driver code of the framework is cross-shared
between NetBSD, OpenBSD, DragonFly BSD and
FreeBSD. The userland interface of the framework is
compatible between OpenBSD, DragonFly BSD and
patched/backdated FreeBSD.

10. Future Projects
Several future projects remain possible in regards to
the sensors framework. In this section, we will try to
identify some of them.

10.1. Hardware support
The most obvious project, as a whole, is improving
hardware support and writing more device drivers for

unsupported sensor chips. Although OpenBSD has
many more sensor drivers than does NetBSD, some
NetBSD drivers for less popular hardware do not yet
have OpenBSD equivalences. Volunteers are needed
to port and test any drivers that are missing from
OpenBSD, but are available in NetBSD, or which are
missing from both systems.

Many sensor drivers could also be ported from
OpenBSD to DragonFly BSD.

10.2. Port sensor-detect.pl from lm_sensors
The GNU/Linux lm_sensors package has a script
called sensor-detect.pl, which scans relevant busses and
tries finding the sensors that are hiding on any such
busses. It might be a worthwhile project to provide
some wrapper utilities for the script, such that the
script could be used on OpenBSD or other BSD plat-
forms to identify which (previously unknown) sensor
devices are available in the hardware, such that any
missing drivers could be written or cross-ported.

10.3. Port i2c_scan.c to other BSDs
Another possible project includes the porting of the
i2c_scan.c functionality to other BSD systems, most
interestingly the FreeBSD / DragonFly BSD APIs.
This would allow a huge number of I²C drivers to be
cross-ported (as well as for all unsupported I²C de-
vices to be promptly identified in the future), once
the i2c_scan.c porting itself is accomplished.

10.4. Further improve sensorsd
The sensorsd(8) sensor monitoring daemon has been
greatly improved since its introduction, but it is still
not as flexible as some comparable utilities are, as far
as extended functionality and the configuration lan-
guage are concerned. It would be an interesting pro-
ject to design a configuration language for sensorsd
similar to the one used in OpenBSD’s Packet Filter
firewall rulesets. Additional monitoring features may
also be introduced to sensorsd, such that it would be
possible to detect more anomalies on those sensors
whose drivers are not keeping up their state, or where
such state might still require additional attention
from the user.

10.5. Fan-speed controlling
Fan-speed controlling was the reason that Constan-
tine A. Murenin got originally interested in the sen-
sors framework back in 2005. Whilst the topic is in-
teresting, many obstacles are present.

OpenBSD Hardware Sensors Framework 11

In general, OpenBSD’s sensors framework requires
very little amount of modification to provide an inter-
face for the ability to conveniently pass values from
sysctl(8) back into the driver, such that the driver, in
turn, could pass such values down to the chip, for the
chip to modify the voltage of some fan headers in a
certain predetermined fashion. In fact, a prototype
patch for supporting exactly this functionality has
been already developed as a part of a bigger project in
2006. [Murenin.BSc06] [Murenin.IEEE07]

However, different generations of chips have different
logic regarding fan control; many chips of recent gen-
erations have multiple temperature levels at which
different fan speeds could be sought; certain tempera-
ture sensors could be specified to affect decisions re-
garding the speed of certain fans etc. Concerns for
simplicity extinction are amplified by the fact that the
majority of motherboards are miswired as far as
hardware monitoring datasheets are concerned, since
many modern hardware monitoring chips oftentimes
provide way much more functionality in regards to
fan controlling than the motherboard manufacturer is
usually interested in supporting and advertising in its
products for its endusers. Therefore, a complete,
flexible and round patch for supporting fan control-
l ing functionality might be a long way from
OpenBSD’s philosophy of being a system where a
great deal of effort is paid towards simplicity and gen-
erality of its feature set.

11. Availability
All described OpenBSD source code, apart from the
userland I²C sandboxing environment, is publicly
available in the OpenBSD CVS repository and in the
official releases. The final patch for FreeBSD is avail-
able in FreeBSD’s perforce repository. The history of
the FreeBSD commit is available in the FreeBSD CVS
and SVN repositories, as is the complete patch of the
framework itself. DragonFly BSD code is available in
the DragonFly CVS and GIT repositories and is part
of the official releases.

This document is a second public revision of the pa-
per that has been written exclusively for AsiaBSDCon
2009 (March 2009, Tokyo, Japan) and was published
in the official proceedings; however, the talk itself has
been also presented earlier at EuroBSDCon 2008 in
S t ra sbourg , France in October 2008
[Murenin.Euro08], and at BSDCan 2008 in Ottawa,
Ontario, Canada in May 2008 (Invited Talk)
[Murenin.Can08] (both of these previous presenta-
tions lacked a formal paper). The BSDCan 2008
presentation and audience participation have been
autosummarised in ;login: The Usenix Magazine issue

from August 2008 [Murenin.Login08], as well as
summarised by the KernelTrap editor Jeremy An-
drews in the KernelTrap computing news web-site
[Andrews.KernelTrap08].

References
[Andrews.KernelTrap08] Jeremy Andrews. “BSDCan 2008:
Hardware Sensors Framework”. KernelTrap. 7 June 2008.
http://kerneltrap.org/OpenBSD/BSDCan_2008_Hardware_
Sensors_Framework

[Balmer.Asia07] Marc Balmer. “Support for Radio Clocks in
OpenBSD”. In: AsiaBSDCon 2007 Proceedings. 8–11 March
2007, Tokyo, Japan.
http://www.openbsd.org/papers/radio-clocks-asiabsdcon07.p
df

[Balmer.Euro07] Marc Balmer. “Supporting Radio Clocks in
OpenBSD”. On: EuroBSDCon 2007. 12–15 September 2007,
Copenhagen, Denmark. Slides:
http://www.openbsd.org/papers/eurobsdcon07/mbalmer-radi
o_clocks.pdf

[Biancuzzi.42] Federico Biancuzzi. “Puffy’s Marathon:
What’s New in OpenBSD 4.2”. O’Reilly ONLamp. 01 No-
vember 2007. http://onlamp.com/lpt/a/7155

[Biancuzzi.44] Federico Biancuzzi. “Source Wars – Return
of the Puffy: What's New in OpenBSD 4.4”. O’Reilly
Community. 3 November 2008.
http://broadcast.oreilly.com/2008/11/source-wars---return-of
-the-pu.html

[deRaadt.misc98] Theo de Raadt. “See: dmesglog works”.
misc@openbsd.org mailing list. 12 November 1998.
http://marc.info/?l=openbsd-misc&m=91090366422103&w=2

[deRaadt.priv06] Theo de Raadt. Private emails. 2006.

[deRaadt.zdnet06] Ingrid Marson. “OpenBSD 3.9 adds sen-
sor framework”. ZDNet UK. 24 March 2006, London, UK.
http://news.zdnet.co.uk/software/,,39259254,.htm

[deRaadt.jedec08] Theo de Raadt. “New sensor driver,
sdtemp(4)”. misc@openbsd.org mailing list. 12 April 2008.
http://marc.info/?l=openbsd-misc&m=120804067607451&w=
2

[FreeBSD.ideas] —. “The FreeBSD list of projects and ideas
for volunteers”. FreeBSD.
http://www.freebsd.org/projects/ideas/

[grange.priv05] Alexander Yurchenko. Private emails. June
2005.

[Gwynne.Open06] David Gwynne and Marco Peereboom.
“Bio and Sensors in OpenBSD”. On: OpenCon 2006 – The
OpenBSD Conference. 2–3 December 2006, Venice, Italy.
Slides: http://www.openbsd.org/papers/opencon06-bio.pdf

OpenBSD Hardware Sensors Framework 12

[lm_sensors.ThinkPad] —. “README.thinkpad”. lm_sen-
sors. 2001/2004.
http://www.lm-sensors.org/browser/lm-sensors/trunk/READ
ME.thinkpad?rev=5132

[Murenin.UKUUG06] Constantine A. Murenin. “Hardware
temperature monitoring device drivers for OpenBSD”. In:
UKUUG Spring Conference and Tutorials: Conference
Proceedings. 21–23 March 2006, Durham, UK.

[Murenin.BSc06] Constantine A. Murenin, B. Sc. (Hons)
Final Year Project Main Report: “Microprocessor system
hardware monitors. Interfacing on OpenBSD with
sysctl(8).” Faculty of Computing Sciences and Engineering,
De Montfort University, Leicester, UK, May 2006.

[Murenin.TOJ06] Constantine A. Murenin. “New two-level
sensor API”. The OpenBSD Journal. 30 December 2006.
http://undeadly.org/cgi?action=article&sid=20061230235005

[Murenin.IEEE07] Constantine A. Murenin. “Generalised
Interfacing with Microprocessor System Hardware Moni-
tors”. In: Proceedings of 2007 IEEE International Confer-
ence on Networking, Sensing and Control. 15–17 April 2007,
London, United Kingdom. IEEE ICNSC 2007, pp. 901—
906. doi:10.1109/ICNSC.2007.372901

[Murenin.GSoC07.prop] Constantine A. Murenin. “Unified
Hardware Monitoring Interface for FreeBSD. (Port
OpenBSD’s sysctl Hardware Sensors Framework)”. 6 April
2007.
http://mojo.ru/us/GSoC2007.FreeBSD.cnst-sensors.proposal
.html

[Murenin.makej07] Constantine A. Murenin. “10-year-old
pointer-arithmetic bug in make(1) is now gone, thanks to
malloc.conf and some debugging”. LiveJournal. 12 June
2007. http://cnst.livejournal.com/24040.html

[Murenin.TOJ07.make] Constantine A. Murenin. “Devel-
oper blog: cnst@: fixing make”. The OpenBSD Journal. 19
June 2007.
http://undeadly.org/cgi?action=article&sid=20070619104027

[Murenin.sysctl07] Constantine A. Murenin. “12-year-old
bug in FreeBSD’s kern_sysctl.c”. LiveJournal. 03 September
2007. http://cnst.livejournal.com/37740.html

[Murenin.GSoC07.fin] Constantine A. Murenin.
“GSoC2007: cnst-sensors.2007-09-13.patch”.
freebsd-hackers@freebsd.org mailing list. 13 September
2007.
http://lists.freebsd.org/pipermail/freebsd-hackers/2007-Sept
ember/021722.html

[Murenin.FQSR07] Constantine A. Murenin, Shteryana
Shopova. “Porting OpenBSD’s sysctl Hardware Sensors
Framework to FreeBSD”. FreeBSD Quarterly Status Report,
July to October 2007.
http://www.freebsd.org/news/status/report-2007-07-2007-10.
html

[Murenin.GSoC07.sum] Constantine A. Murenin.
“GSoC2007/cnst-sensors”. FreeBSD. 14 October 2007.
http://wiki.freebsd.org/GSoC2007/cnst-sensors

[Murenin.TOJ07.wbng] Constantine A. Murenin. “Devel-
oper blog: cnst@: wbng(4) and how it was written”. The
OpenBSD Journal. 29 October 2007.
http://undeadly.org/cgi?action=article&sid=2007102908000
0

[Murenin.Can08] Constantine A. Murenin. “OpenBSD
Hardware Sensors Framework”. On: BSDCan 2008 – The
BSD Conference, Invited Talks track. 14–17 May 2008, Ot-
tawa, Ontario, Canada. Slides:
http://www.openbsd.org/papers/bsdcan08-sensors.pdf

[Murenin.Login08] Constantine A. Murenin. “OpenBSD
Hardware Sensors Framework”, “X.Org”, “BSD licensed C++
compiler”. In: Conference Reports, BSDCan: The BSD
Conference. USENIX ;login:, August 2008, Volume 33,
Number 4, pp. 113–114.

[Murenin.Euro08] Constantine A. Murenin. “OpenBSD
Hardware Sensors Framework”. On: EuroBSDCon 2008 –
The 7th European BSD Conference. 16–19 October 2008,
Strasbourg, France. Slides:
http://www.openbsd.org/papers/eurobsdcon2008-sensors.pd
f

[phk.arch07] Poul-Henning Kamp. “Please think architec-
ture...”. freebsd-arch@freebsd.org mailing list. 29 August
2007.
http://lists.freebsd.org/pipermail/freebsd-arch/2007-August/
006763.html

[phk.gsocgood07] Poul-Henning Kamp. “Re: cvs commit:
src/etc Makefile sensorsd.conf ...”. cvs-src@freebsd.org mail-
ing list. 14 October 2007.
http://lists.freebsd.org/pipermail/cvs-src/2007-October/0824
07.html

[Tepper.submit07] Hasso Tepper. “Hardware sensors
framework and some drivers using it”.
submit@dragonflybsd.org mailing list. 25 September 2007.
http://leaf.dragonflybsd.org/mailarchive/submit/2007-09/ms
g00020.html

[Tepper.priv07] Hasso Tepper. Private email. 25 September
2007.

[Theile.arch07] Volker Theile, Alexander Leidinger, LI Xin,
Bruno Ducrot. “Any plans to implement OpenBSD sensor
framework into FreeBSD?”. freebsd-arch@freebsd.org mail-
ing list. January 2007.
http://lists.freebsd.org/pipermail/freebsd-arch/2007-January/
006048.html

OpenBSD Hardware Sensors Framework 13

Biography
Constantine A. Murenin is an MMath graduate
student at the David R. Cheriton School of Com-
puter Science at the University of Waterloo (CA).
Prior to his graduate appointment, Constantine at-
tended and subsequently graduated from East Caro-
lina University (US) and De Montfort University
(UK), receiving two Bachelor of Science degrees in
Computer Science, with Honors and Honours, in
2007 and 2006, respectively. An OpenBSD Commit-
ter, FreeBSD Google Summer of Code Student Alum-
nus and Mozilla Contributor, Constantine's interests
range from standards compliance and usability at all
levels, to quiet computing and hardware monitoring.
You can contact him via email at <cnst@openbsd.org>.

Raouf Boutaba received the MSc and PhD degrees
in Computer Science from the University of Paris 6,
Paris, in 1990 and 1994, respectively. He is currently a
Professor of Computer Science at the University of
Waterloo. His research interests include network,
resource and service management in wired and wire-
less networks. He is the founder and Editor-in-Chief
of the IEEE Transactions on Network and Service
Management and on the editorial boards of several
other journals. He is currently a distinguished lec-
turer of the IEEE Communications Society, the
chairman of the IEEE Technical Committee on In-
formation Infrastructure and the Director of the
ComSoc Related Societies Board. He has received
several best paper awards and other recognitions such
as the Premier’s research excellence award.

OpenBSD Hardware Sensors Framework 14

